首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1442篇
  免费   30篇
  国内免费   6篇
化学   1098篇
晶体学   9篇
力学   24篇
数学   177篇
物理学   170篇
  2022年   9篇
  2021年   23篇
  2020年   19篇
  2019年   24篇
  2018年   18篇
  2017年   11篇
  2016年   41篇
  2015年   28篇
  2014年   19篇
  2013年   68篇
  2012年   75篇
  2011年   104篇
  2010年   47篇
  2009年   49篇
  2008年   88篇
  2007年   72篇
  2006年   87篇
  2005年   64篇
  2004年   68篇
  2003年   62篇
  2002年   45篇
  2001年   21篇
  2000年   11篇
  1999年   7篇
  1998年   14篇
  1997年   10篇
  1996年   19篇
  1995年   11篇
  1994年   14篇
  1993年   13篇
  1992年   13篇
  1991年   8篇
  1990年   10篇
  1989年   9篇
  1988年   11篇
  1987年   15篇
  1985年   38篇
  1984年   28篇
  1983年   15篇
  1982年   27篇
  1981年   18篇
  1980年   20篇
  1979年   24篇
  1978年   11篇
  1977年   8篇
  1976年   10篇
  1975年   13篇
  1974年   9篇
  1972年   6篇
  1970年   7篇
排序方式: 共有1478条查询结果,搜索用时 31 毫秒
991.
992.
Eight compatibilizing agents were studied to investigate their effect on the quality of the interface between a phosphate glass fiber and a poly(lactic acid) (PLA) matrix. After application of the agents via dip‐coating, the fibers were Soxhlet extracted to remove any unreacted compatibilizer. To assess the interface quality, single fiber tensile tests of treated fibers and interfacial shear strengths (IFSS) of single fiber composites (SFC) were assessed. Of the agents tested, Glycerol‐2‐phosphate disodium pentahydrate (GP) and low molecular weight PLA with a sodium salt terminal group (PLA‐Na) showed the highest IFSS values, which were significantly higher than those of the control. Oligomeric PLA with a carboxylic acid end group and alendronate sodium trihydrate also showed an improvement over the control fibers. The hydrolytic degradation of these single fiber composites was studied over 7 days in water at 37 °C and a significant decrease in IFSS was observed in all cases, with the treated samples dropping to the level of the control. TGA and XPS analysis of the sized fibers showed that GP and PLA‐Na had been applied successfully to the fiber surface. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3082–3094, 2010  相似文献   
993.
994.
A microfluidic reactor that enables rapid digestion of proteins prior to on‐line analysis by electrospray ionization mass spectrometry (ESI‐MS) is introduced. The device incorporates a wide (1.5 cm), shallow (10 µm) reactor ‘well’ that is functionalized with pepsin‐agarose, a design that facilitates low‐pressure operation and high clogging resistance. Electrospray ionization is carried out directly from a short metal capillary integrated into the chip outlet. Fabrication, involving laser ablation of polymethyl methacrylate (PMMA), is exceedingly straightforward and inexpensive. High sequence coverage spectra of myoglobin (Mb), ubiquitin (Ub) and bovine serum albumin (BSA) digests were obtained after <4 s of residence time in the reactor. Stress testing showed little loss of performance over ~2 h continuous use at high flow rates (30 µL/min). The device provides a convenient platform for a range of applications in proteomics and structural biology, i.e. to enable high‐throughput workflows or to limit back‐exchange in spatially resolved hydrogen/deuterium exchange (HDX) experiments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
995.
Phosphaalkenes (MesP=CRR': R = R' = Ph (1a); R = R' = 4-FC6H4 (1b); R = Ph, R' = 4-FC6H4 (1c); R = R' = 4-OMeC6H4 (1d); R = Ph, R' = 4-OMeC6H4 (1e); R = Ph, R' = 2-pyridyl (1f)) are prepared from the reaction of MesP(SiMe3)2 and O=CRR' in the presence of a trace of KOH or NaOH. The base-catalyzed phospha-Peterson reaction is quantitated by NMR spectroscopy, and isolated yields of phosphaalkene between 40 and 70% are obtained after vacuum distillation and/or recrystallization. The asymmetrically substituted phosphaalkenes (1c, 1e, 1f) form as 1:1 mixtures of E and Z isomers; however, X-ray crystallography reveals that the E isomers crystallize preferentially. Interestingly, E-1e and E-1f readily isomerize in solution in the dark, although the rate of isomerization is much faster when samples are exposed to light. X-ray crystal structures of 1b, E-1e, and E-1f reveal that the P=C bond lengths (average of 1.70 A) are in the long end of the range typically found in phosphaalkenes (1.61-1.71 A). Attempts to prepare isolable P-adamantyl phosphaalkenes following this route were unsuccessful. Although AdP=CPh2 (2a) is detected by 31P NMR spectroscopy, attempts to isolate this species afforded the 1,2-diphosphetane (AdPCPh2)2 (3a), which was characterized by X-ray crystallography.  相似文献   
996.
Four different cellulose model surfaces, and one silica surface, have been studied by means of atomic force microscopy (AFM). The normal interactions have been found to consist of a longer range double layer force with a short range steric interaction, the nature of which is extensively discussed. Both the surface charge and range of the steric force depend on the type of cellulose substrate used, as does the magnitude of the adhesion. Studies of friction reveal that surface roughness is the determining factor for the friction coefficient, with which it increases monotonically. The absolute value, however, is determined by the surface chemistry. All studied cellulose surfaces show similar behavior in response to xyloglucan addition.  相似文献   
997.
Reversible Diels-Alder chemistry was exploited to develop thermo-responsive polymer films. Here, low molecular weight poly(styrene) (PS) and poly(ethylene glycol) (PEG) were prepared with furyl and maleimido chain ends, respectively. These polymers were then tethered together to form a thiol-terminated PEG-b-PS diblock copolymer ligand via a Diels-Alder linkage and were employed to randomly disperse 10 nm diameter Au nanoparticles within a matrix of PEG. Thermal treatment caused the Diels-Alder linkages between the polymer blocks to be severed, resulting in controllable surface functionalization due to phase separation. Migration of the Au nanoparticles to the surface of the films was characterized by Rutherford backscattering spectroscopy, small-angle X-ray scattering, contact angle measurements, and atomic force microscopy.  相似文献   
998.
We report the synthesis of ternary polymer particle material systems composed of (a) a spherical colloidal particle core, coated with (b) a polyelectrolyte intermediate shell, and followed by (c) a grafted polymer brush prepared by surface-initiated polymerization as the outer shell. The layer-by-layer (LbL) deposition process was utilized to create a functional intermediate shell of poly(diallyl-dimethylammonium chloride)/poly(acrylic acid) multilayers on the colloid template with the final layer containing an atom transfer radical polymerization (ATRP) macroinitiator polyelectrolyte. The intermediate core-shell architecture was analyzed with FT-IR, electrophoretic mobililty (zeta-potential) measurements, atomic force microscopy, and transmission electron microscopy (TEM) techniques. The particles were then utilized as macroinitiators for the surface-initiated ATRP grafting process for poly(methyl methacrylate) polymer brush. The polymer grafting was confirmed with thermo gravimetric analysis, FT-IR, and TEM. The polymer brush formed the outermost shell for a ternary colloidal particle system. By combining the LbL and surface-initiated ATRP methods to produce controllable multidomain core-shell architectures, interesting functional properties should be obtainable based on independent polyelectrolyte and polymer brush behavior.  相似文献   
999.
The temporary anion states of gas-phase diphenyl disulfide are characterized by means of electron transmission (ET) and dissociative electron attachment (DEA) spectroscopies. The measured energies of vertical electron attachment are compared to the virtual orbital energies of the neutral state molecule supplied by MP2 and B3LYP calculations with the 6-31G basis set. The calculated energies, scaled with empirical equations, reproduce satisfactorily the attachment energies measured in the ET spectrum. The first anion state of diphenyl disulfide is stable, thus escaping detection in ETS. The vertical and adiabatic electron affinities, evaluated with B3LYP/6-31+G calculations as the energy difference between the neutral and anion states, are predicted to be 0.37 and 1.38 eV, respectively. The anion current displayed in the DEA spectrum has a sharp and intense peak at zero energy, essentially due to the C6H5S- negative fragment. In agreement, according to the calculations, the localization properties of the first anion state are strongly S-S antibonding, and the energetic requirement for its dissociation along the S-S bond is fulfilled even at zero energy.  相似文献   
1000.
Cytochrome c oxidase, the enzyme complex responsible for the four-electron reduction of O2 to H2O, contains an unusual histidine-tyrosine cross-link in its bimetallic heme a3-CuB active site. We have synthesised an unhindered, tripodal chelating ligand, BPAIP, containing the unusual ortho-imidazole-phenol linkage, which mimics the coordination environment of the CuB center. The ligand was used to investigate the physicochemical (pKa, oxidation potential) and coordination properties of the imidazole-phenol linkage when bound to a dication. Zn(II) coordination lowers the pKa of the phenol by 0.6 log units, and increases the potential of the phenolate/phenoxyl radical couple by approximately 50 mV. These results are consistent with inductive withdrawal of electron density from the phenolic ring. Spectroscopic data and theoretical calculations (DFT) were used to establish that the cationic complex [Zn(BPAIP)Br]+ has an axially distorted trigonal bipyramidal structure, with three coordinating nitrogen ligands (two pyridine and one imidazole) occupying the equatorial plane and the bromide and the tertiary amine nitrogen of the tripod in the axial positions. Interestingly, the Zn-Namine bonding interaction is weak or absent in [Zn(BPAIP)Br]+ and the complex gains stability in basic solutions, as indicated by 1H NMR spectroscopy. These observations are supported by theoretical calculations (DFT), which suggest that the electron-donating capacity of the equatorial imidazole ligand can be varied by modulation of the protonation and/or redox state of the cross-linked phenol. Deprotonation of the phenol makes the equatorial imidazole a stronger sigma-donor, resulting in an increased Zn-Nimd interaction and thereby leading to distortion of the axial ligand axis toward a more tetrahedral geometry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号