首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   830篇
  免费   52篇
  国内免费   1篇
化学   583篇
晶体学   9篇
力学   25篇
数学   79篇
物理学   187篇
  2024年   2篇
  2023年   8篇
  2022年   19篇
  2021年   16篇
  2020年   21篇
  2019年   23篇
  2018年   18篇
  2017年   15篇
  2016年   36篇
  2015年   34篇
  2014年   40篇
  2013年   66篇
  2012年   79篇
  2011年   77篇
  2010年   34篇
  2009年   38篇
  2008年   33篇
  2007年   41篇
  2006年   18篇
  2005年   32篇
  2004年   30篇
  2003年   27篇
  2002年   26篇
  2001年   15篇
  2000年   13篇
  1999年   10篇
  1998年   15篇
  1997年   6篇
  1996年   3篇
  1995年   8篇
  1994年   9篇
  1993年   5篇
  1992年   5篇
  1991年   4篇
  1990年   3篇
  1989年   3篇
  1986年   3篇
  1985年   5篇
  1984年   3篇
  1982年   5篇
  1981年   6篇
  1980年   6篇
  1979年   4篇
  1977年   2篇
  1976年   3篇
  1974年   2篇
  1973年   2篇
  1972年   2篇
  1971年   2篇
  1961年   2篇
排序方式: 共有883条查询结果,搜索用时 15 毫秒
131.
Complexation of lipids and surfactants with short DNA fragments at the air-water interface has been studied by neutron reflectivity. Complexation with zwitterionic lipids occurs in the presence of divalent cations, and ion specificity has been demonstrated (binding is less effective with Ba2+ than with Mg2+ or Ca2+). One and two DNA layers have been observed for dilute and more compact lipid monolayers, respectively. Two DNA layers have also been found with the soluble cationic surfactant dodecyltrimethylammonium bromide (DTAB), except close to the precipitation boundary. This result is opposite to that found in ellipsometry where very thick layers are found in this region. It is possible that the ellipsometry signal is due to highly hydrated bulk complexes adsorbing at the surface, not seen by neutrons because of unfavorable contrast conditions. Long DNA was found to be less keen to form surface complexes than short DNA fragments.  相似文献   
132.
Biological molecules, in particular DNA, have shown great potential to be used as interconnects of nanodevices and computational elements. In this research, we synthesized electrically conductive gold nanowires for the first time exploiting an electroless and microwave heating method for 120-180 s. Our results indicate that DNA serves as a reducing and nonspecific capping agent for the growth of nanowires. The current voltage ( I- V) characteristics of the Au nanowires are continuous, exhibiting Ohmic behavior having low contact resistance with the gold electrodes. The nanowires have a diameter of 10-15 nm in solution and of 20-30 nm in immobilized DNA with resistivity comparable to pure metals. The method is highly selective with deposition confined to the DNA itself. The nanowires we fabricated can be used as building blocks for functional nanodevices, sensors, and optoelectronics.  相似文献   
133.
A series of dinuclear copper(II) complexes has been synthesized with the aim to investigate their applicability as potential structure and function models for the active site of catechol oxidase enzyme. They have been characterized by routine physicochemical techniques as well as by X-ray single-crystal structure analysis: [Cu 2(H 2L2 (2))(OH)(H 2O)(NO 3)](NO 3) 3.2H 2O ( 1), [Cu(HL1 (4))(H 2O)(NO 3)] 2(NO 3) 2.2H 2O ( 2), [Cu(L1 (1))(H 2O)(NO 3)] 2 ( 3), [Cu 2(L2 (3))(OH)(H 2O) 2](NO 3) 2, ( 4) and [Cu 2(L2 (1))(N 3) 3] ( 5) [L1 = 2-formyl-4-methyl-6R-iminomethyl-phenolato and L2 = 2,6-bis(R-iminomethyl)-4-methyl-phenolato; for L1 (1) and L2 (1), R = N-propylmorpholine; for L2 (2), R = N-ethylpiperazine; for L2 (3), R = N-ethylpyrrolidine, and for L1 (4), R = N-ethylmorpholine]. Dinuclear 1 and 4 possess two "end-off" compartmental ligands with exogenous mu-hydroxido and endogenous mu-phenoxido groups leading to intermetallic distances of 2.9794(15) and 2.9435(9) A, respectively; 2 and 3 are formed by two tridentate compartmental ligands where the copper centers are connected by endogenous phenoxido bridges with Cu-Cu separations of 3.0213(13) and 3.0152(15) A, respectively; 5 is built by an end-off compartmental ligand having exogenous mu-azido and endogenous mu-phenoxido groups with a Cu-Cu distance of 3.133(2) A (mean of two independent molecules). The catecholase activity of all of the complexes has been investigated in acetonitrile and methanol medium by UV-vis spectrophotometric study using 3,5-di- tert-butylcatechol (3,5-DTBC) and tetrachlorocatechol (TCC) as substrates. In acetonitrile medium, the conversion of 3,5-DTBC to 3,5-di- tert-butylbenzoquinone (3,5-DTBQ) catalyzed by 1- 5 is observed to proceed via the formation of two enzyme-substrate adducts, ES1 and ES2, detected spectroscopically for the first time. In methanol medium no such enzyme-substrate adduct has been detected, and the 3,5-DTBC to 3,5-DTBQ conversion is observed to be catalyzed by 1- 5 very efficiently. The substrate TCC forms an adduct with 2- 5 without performing further oxidation to TCQ due to the high reduction potential of TCC (in comparison with 3,5-DTBC). But most interestingly, 1 is observed to be effective even in TCC oxidation, a process never reported earlier. Kinetic experiments have been performed to determine initial rate of reactions (3,5-DTBC as substrate, in methanol medium) and the activity sequence is 1 > 5 > 2 = 4 > 3. A treatment on the basis of Michaelis-Menten model has been applied for kinetic study, suggesting that all five complexes exhibit very high turnover number, especially 1, which exhibits turnover number or K cat of 3.24 x 10 (4) (h (-1)), which is approximately 3.5 times higher than the most efficient catalyst reported to date for catecholase activity in methanol medium.  相似文献   
134.
The current research work has employed an evolutionary based novel navigational strategy to trace the collision free near optimal path for underwater robot in a three-dimensional scenario. The population based harmony search algorithm has been dynamically adapted and used to search next global best pose for underwater robot while obstacle is identified near about robot’s current pose. Each pose is evaluated based on their respective value for objective function which incorporates features of path length minimization as well as obstacle avoidance. Dynamic adaptation of control parameters and new perturbation schemes for solution vectors of harmony search has been proposed to strengthen both exploitation and randomization ability of present search process in a balanced manner. Such adaptive tuning process has found to be more effective for avoiding early convergence during underwater motion in comparison with performances of other popular variants of Harmony Search. The proposed path planning method has also shown better navigational performance in comparison with improved version of ant colony optimization and heuristic potential field method for avoiding static obstacles of different shape and sizes during underwater motion. Simulation studies and corresponding experimental verification for three-dimensional navigation are performed to check the accuracy, robustness and efficiency of proposed dynamically adaptive harmony search algorithm.  相似文献   
135.
JPC – Journal of Planar Chromatography – Modern TLC - An optimized method for the extraction and quantification of artemisinin using high-performance thin-layer chromatography (HPTLC)...  相似文献   
136.
G‐tetraplex induced fluorescence resonance energy transfer (FRET) within telomeric repeat sequences has been studied using a nucleoside‐tethered FRET pair embedded in the human telomeric G‐quadruplex forming sequence (5′‐A GGG TT Py A GGG TT Per A GGG TTA GGG‐3′, Py=pyrene, Per=perylene). Conformational change from a single strand to an anti‐parallel G‐quadruplex leads to FRET from energy donor ( Py A ) to acceptor ( Per A ). The distance between the FRET donor/acceptor partners was controlled by changing the number of G‐quartet spacer units. The FRET efficiency decreases with increase in G‐quartet units. Overall findings indicate that this could be further used for the development of FRET‐based sensing and measurement techniques.  相似文献   
137.
Nitrosobenzene (PhNO) serves as a stable analogue of nitroxyl (HNO), a biologically relevant, redox‐active nitric oxide derivative. Capture of nitrosobenzene at the electron‐deficient β‐diketiminato nickel(I) complex [iPr2NNF6]Ni results in reduction of the PhNO ligand to a (PhNO)./? species coordinated to a square planar NiII center in [iPr2NNF6]Ni(η2‐ONPh). Ligand centered reduction leads to the (PhNO)2? moiety bound to NiII supported by XAS studies. Systematic investigation of structure–reactivity patterns of (PhNO)./? and (PhNO)2? ligands reveals parallels with superoxo (O2)./? and peroxo (O2)2? ligands, respectively, and forecasts reactivity patterns of the more transient HNO ligand.  相似文献   
138.
139.
Isovalent mu-oxo divanadium(V) compounds [L1VO(mu-O)VO(salen)] (1) and its bromo derivative [L2VO(mu-O)VO(salen)].CH3CN (2) (both H2L1 and H2L2 are tridentate dithiocarbazate-based ONS ligands) with ligands providing donor set and coordination number asymmetry in tandem have been synthesized for the first time; confirmations in favor of these unsymmetrical molecular structures have come from single-crystal X-ray diffraction analysis, as well as from NMR (both 1H and 51V) spectroscopy.  相似文献   
140.
The laser induced fluorescence excitation and dispersed fluorescence spectra of three nitrogen heterocyclic molecules 1-methyl-2(1H)pyridone (1MPY), 1-methyl-2(1H)pyridinimine (1MPI), and 3-methyl-2(1H)pyridone (3MPY) have been studied under supersonic jet cooled condition. The methyl torsional and some low frequency vibrational transitions in the fluorescence excitation spectrum were assigned for 1MPY. These new assignments modify the potential parameters to the methyl torsion reported earlier. Some striking similarities exist between the torsional and vibrational transitions in the fluorescence excitation spectra of 1MPY and 1MPI. Apart from pure torsional transitions, a progression of vibration-torsion combination bands was observed for both these molecules. The excitation spectrum of 3MPY resembles the spectrum of its parent molecule, 2-pyridone. The barrier height of the methyl torsion in the excited state of 3MPY is highest amongst all these molecules, whereas the barrier in 1MPI is higher than that of 1MPY. To get an insight into the methyl torsional barrier for these molecules, results of the ab initio calculations were compared with the experimental results. It was found that the conformation of the methyl group undergoes a 60 degrees rotation in the excited state in all these molecules with respect to their ground state conformation. This phase shift of the excited state potential is attributed to the pi*-sigma* hyperconjugation between the out-of-plane hydrogen of the methyl group and the molecular frame. It has been inferred that the change in lowest unoccupied molecular orbital energy plays the dominant role in the excited state barrier formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号