首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34497篇
  免费   336篇
  国内免费   193篇
化学   22989篇
晶体学   366篇
力学   778篇
数学   5466篇
物理学   5427篇
  2023年   194篇
  2022年   305篇
  2021年   530篇
  2020年   637篇
  2019年   618篇
  2018年   410篇
  2017年   408篇
  2016年   880篇
  2015年   769篇
  2014年   857篇
  2013年   1769篇
  2012年   1897篇
  2011年   2391篇
  2010年   1169篇
  2009年   1037篇
  2008年   2034篇
  2007年   2034篇
  2006年   2012篇
  2005年   1874篇
  2004年   1604篇
  2003年   1391篇
  2002年   1301篇
  2001年   420篇
  2000年   396篇
  1999年   382篇
  1998年   347篇
  1997年   358篇
  1996年   491篇
  1995年   346篇
  1994年   303篇
  1993年   270篇
  1992年   270篇
  1991年   238篇
  1990年   202篇
  1989年   207篇
  1988年   234篇
  1987年   200篇
  1985年   352篇
  1984年   340篇
  1983年   242篇
  1982年   316篇
  1981年   323篇
  1980年   301篇
  1979年   281篇
  1978年   258篇
  1977年   230篇
  1976年   208篇
  1975年   212篇
  1974年   211篇
  1973年   209篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
851.
Non-covalent interactions hold the key to understanding many chemical, biological, and technological problems. Describing these non-covalent interactions accurately, including their positions in real space, constitutes a first step in the process of decoupling the complex balance of forces that define non-covalent interactions. Because of the size of macromolecules, the most common approach has been to assign van der Waals interactions (vdW), steric clashes (SC), and hydrogen bonds (HBs) based on pairwise distances between atoms according to their van der Waals radii. We recently developed an alternative perspective, derived from the electronic density: the Non-Covalent Interactions (NCI) index [J. Am. Chem. Soc. 2010, 132, 6498]. This index has the dual advantages of being generally transferable to diverse chemical applications and being very fast to compute, since it can be calculated from promolecular densities. Thus, NCI analysis is applicable to large systems, including proteins and DNA, where analysis of non-covalent interactions is of great potential value. Here, we describe the NCI computational algorithms and their implementation for the analysis and visualization of weak interactions, using both self-consistent fully quantum-mechanical, as well as promolecular, densities. A wide range of options for tuning the range of interactions to be plotted is also presented. To demonstrate the capabilities of our approach, several examples are given from organic, inorganic, solid state, and macromolecular chemistry, including cases where NCI analysis gives insight into unconventional chemical bonding. The NCI code and its manual are available for download at http://www.chem.duke.edu/~yang/software.htm.  相似文献   
852.
In contrast to simple salts or negatively charged macromolecules, positively charged proteins and peptides including cytochrome c (yeast) and poly-L-lysine are efficiently encapsulated while inducing the formation of polymersomes from polystyrene(140)-b-poly(acrylic acid)(48) (PS(140)-b-PAA(48)).  相似文献   
853.
We present a periodic density-functional study of hydrogen adsorption and diffusion on the Si(110)-(1×1) and (2×1) surfaces, and identify a local reconstruction that stabilizes the clean Si(110)-(1×1) by 0.51 eV. Hydrogen saturates the dangling bonds of surface Si atoms on both reconstructions and the different structures can be identified from their simulated scanning tunneling microscopy/current image tunneling spectroscopy (STM/CITS) images. Hydrogen diffusion on both reconstructions will proceed preferentially along zigzag rows, in between two adjacent rows. The mobility of the hydrogen atom is higher on the (2×1) reconstruction. Diffusion of a hydrogen vacancy on a monohydride Si(110) surface will proceed along one zigzag row and is slightly more difficult (0.2 eV and 0.6 eV on (1×1) and (2×1), respectively) than hydrogen atom diffusion on the clean surface.  相似文献   
854.
Advances in nanoscience are critically dependent on the ability to control and probe chemical and physical phenomena in confined geometries. A key challenge is to identify confinement structures with high surface area to volume ratios and controlled surface boundaries that can be probed quantitatively at the molecular level. Herein we report an approach for probing molecular structures within nano- to microscale pores by the application of spontaneous Raman spectroscopy. We demonstrate the method by characterization of the structural features of picomole quantities of well-organized octadecyltrichlorosilane (OTS) monolayers self-assembled on the interior pore surfaces of high aspect ratio (1 μm diameter × 1-10 cm length), near-atomically smooth silica microstructured optical fibers (MOFs). The simple Raman backscattering collection geometry employed is well suited for a wide variety of diagnostic applications as demonstrated by tracking the combustion of the hydrocarbon chains of the OTS self-assembled monolayer (SAM) and spectral confirmation of the formation of an adsorbed monolayer of human serum albumin (HSA) protein. Using this MOF Raman approach, molecular processes in precisely defined, highly confined geometries can be probed at high pressures and temperatures, with a wide range of excitation wavelengths from the visible to the near-IR, and under other external perturbations such as electric and magnetic fields.  相似文献   
855.
The combination of highly efficient polymerizations with modular "click" coupling reactions has enabled the synthesis of a wide variety of novel nanoscopic structures. Here we demonstrate the facile synthesis of a new class of clickable, branched nanostructures, polyethylene glycol (PEG)-branch-azide bivalent-brush polymers, facilitated by "graft-through" ring-opening metathesis polymerization of a branched norbornene-PEG-chloride macromonomer followed by halide-azide exchange. The resulting bivalent-brush polymers possess azide groups at the core near a polynorbornene backbone with PEG chains extended into solution; the structure resembles a unimolecular micelle. We demonstrate copper-catalyzed azide-alkyne cycloaddition (CuAAC) "click-to" coupling of a photocleavable doxorubicin (DOX)-alkyne derivative to the azide core. The CuAAC coupling was quantitative across a wide range of nanoscopic sizes (~6-~50 nm); UV photolysis of the resulting DOX-loaded materials yielded free DOX that was therapeutically effective against human cancer cells.  相似文献   
856.
A method for obtaining partial differential cross sections for low energy electron photodetachment in which the electronic states of the residual molecule are strongly coupled by conical intersections is reported. The method is based on the iterative solution to a Lippmann-Schwinger equation, using a zeroth order Hamiltonian consisting of the bound nonadiabatically coupled residual molecule and a free electron. The solution to the Lippmann-Schwinger equation involves only standard electronic structure techniques and a standard three-dimensional free particle Green's function quadrature for which fast techniques exist. The transition dipole moment for electron photodetachment, is a sum of matrix elements each involving one nonorthogonal orbital obtained from the solution to the Lippmann-Schwinger equation. An expression for the electron photodetachment transition dipole matrix element in terms of Dyson orbitals, which does not make the usual orthogonality assumptions, is derived.  相似文献   
857.
There is no technology available to support failing lung function for patients outside the hospital. An implantable lung assist device would augment lung function as a bridge to transplant or possible destination therapy. Utilizing biomimetic design principles, a microfluidic vascular network was developed for blood inflow from the pulmonary artery and blood return to the left atrium. Computational fluid dynamics analysis was used to optimize blood flow within the vascular network. A micro milled variable depth mold with 3D features was created to achieve both physiologic blood flow and shear stress. Gas exchange occurs across a thin silicone membrane between the vascular network and adjacent alveolar chamber with flowing oxygen. The device had a surface area of 23.1 cm(2) and respiratory membrane thickness of 8.7 ± 1.2 μm. Carbon dioxide transfer within the device was 156 ml min(-1) m(-2) and the oxygen transfer was 34 ml min(-1) m(-2). A lung assist device based on tissue engineering architecture achieves gas exchange comparable to hollow fiber oxygenators yet does so while maintaining physiologic blood flow. This device may be scaled up to create an implantable ambulatory lung assist device.  相似文献   
858.
In the solvent-free oxidation of benzyl alcohol to benzaldehyde using supported gold-palladium nanoparticles as catalysts, two pathways have been identified as the sources of the principal product, benzaldehyde. One is the direct catalytic oxidation of benzyl alcohol to benzaldehyde by O(2), whereas the second is the disproportionation of two molecules of benzyl alcohol to give equal amounts of benzaldehyde and toluene. Herein we report that by changing the metal oxide used to support the metal-nanoparticles catalyst from titania or niobium oxide to magnesium oxide or zinc oxide, it is possible to switch off the disproportionation reaction and thereby completely stop the toluene formation. It has been observed that the presence of O(2) increases the turnover number of this disproportionation reaction as compared to reactions in a helium atmosphere, implying that there are two catalytic pathways leading to toluene.  相似文献   
859.
Introduction of a β-electron withdrawing group to cycloalkanones allows facile C-C bond fragmentation. The reaction has been demonstrated with a large range of ring sizes, bearing various leaving and electron withdrawing groups, and using a variety of nitrogen and oxygen containing nucleophiles (>30 examples). The application of fragmentation products to the preparation of substituted γ-lactones has been demonstrated. Mechanistic studies are reported which are suggestive of a Grob/Eschenmoser type reaction.  相似文献   
860.
Choi I  Huh YS  Erickson D 《Lab on a chip》2011,11(4):632-638
Trace detection and physicochemical characterization of protein aggregates have a large impact in understanding and diagnosing many diseases, such as ageing-related neurodegeneration and systemic amyloidosis, for which the formation of protein aggregates is one of the pathological hallmarks. Here we demonstrate an innovative label-free method for detecting and characterizing small amounts of early stage protein aggregates using a Raman active nanofluidic device. Sub-micrometre channels formed by a novel elastomeric collapse technique enable the separation and concentration of matured protein aggregates from small protein molecules. The Raman enhancement by gold nanoparticle clusters fixed below a micro/nanofluidic junction allows characterization of intrinsic properties of protein aggregates at concentration levels (~fM) much lower than can be done with traditional analytical tools. With our device we show for the first time the concentration dependence of protein aggregation over these low concentration ranges. We expect that our method could facilitate definitive diagnosis and possible therapeutics of diseases at early stages.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号