首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109054篇
  免费   1420篇
  国内免费   616篇
化学   46119篇
晶体学   1000篇
力学   7400篇
数学   36899篇
物理学   19672篇
  2022年   196篇
  2021年   420篇
  2020年   515篇
  2019年   487篇
  2018年   10673篇
  2017年   10502篇
  2016年   6784篇
  2015年   1560篇
  2014年   1088篇
  2013年   2018篇
  2012年   5562篇
  2011年   12640篇
  2010年   6680篇
  2009年   6938篇
  2008年   8478篇
  2007年   10575篇
  2006年   2195篇
  2005年   3132篇
  2004年   3081篇
  2003年   3314篇
  2002年   2274篇
  2001年   640篇
  2000年   672篇
  1999年   510篇
  1998年   522篇
  1997年   500篇
  1996年   676篇
  1995年   455篇
  1994年   371篇
  1993年   362篇
  1992年   319篇
  1991年   297篇
  1990年   247篇
  1989年   260篇
  1988年   288篇
  1987年   256篇
  1986年   235篇
  1985年   394篇
  1984年   380篇
  1983年   278篇
  1982年   349篇
  1981年   362篇
  1980年   347篇
  1979年   326篇
  1978年   290篇
  1977年   245篇
  1976年   222篇
  1975年   225篇
  1974年   219篇
  1973年   236篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
981.
The first molal hydrolysis quotient, Q1.1, of Mg2+ was measured potentiometrically from 1 to 250°C at ionic strengths of 0.11, 0.31, 1.01, and 5.0 mol-kg-1 in an aqueous NaCl medium using a hydrogen-electrode, concentration cell. Only hydrolysis of the first four percent of the magnesium in solution could be followed before precipitation of brucite, Mg(OH)2(cr), occurred. The log Q1.1 values were fitted as a function of temperature and ionic strength using four adjustable parameters. The resulting constants are compared with the limited existing low temperature data. At infinite dilution and 25°C the following quantities are reported: logK 1.1 = -11.68±0.05, †Hso = 70.1±1.2 kJ-mol-1, †So = 11±4 J-K-1-mol-1, and †C p o = 0 J-K-1-mor-1. At each ionic strength, including the values extrapolated to infinite dilution, the heat capacity change for the hydrolysis reaction was zero,i.e., logQ 1.1 was found to be a linear function of the reciprocal temperature in Kelvin, at least over the measured range of l-250°C. The hydrolysis constants at infinite dilution were modeled to 550°C and two kbar pressure with a function incorporating solvent density using published results obtained at these extreme conditions.  相似文献   
982.
A new method for the direct calculation of resonance parameters is presented. It is based upon searching for poles of the scattering matrix at complex energies. This search is expedited by the use of analytic derivatives of the scattering matrix with respect to the total energy. This procedure is applied initially to a single channel problem, but is generalizable to more complicated systems. Using the most accurate available potential energy data, we calculate resonance parameters for all of the physically important quasibound states of the ground electronic state of the hydrogen molecule. Corrections to the Born-Oppenheimer potential are included and assessed. The new method has no difficulty locating resonances with widths greater than about 1×10–7 cm–1. It is easier to find narrow resonances by monitoring the dependence of the imaginary part of the reactance matrix on the real part of a complex energy than to monitor the dependence of the eigenphase sum on energy at real energies.  相似文献   
983.
Substituted pyridones and pyridines have been synthesised efficiently by employing iminium salt as a key precursor. These compounds were prepared using tandem [4+2] cycloaddition/deamination between azabutadiene and dienophiles.  相似文献   
984.
New, rapid, and inexpensive methods that monitor the chemical composition of corn stover and corn stover-derived samples are a key element to enabling the commercialization of processes that convert stover to fuels and chemicals. These new techniques combine near infrared (NIR) spectroscopy and projection to latent structures (PLS) multivariate analysis to allow the compositional analysis of hundreds of samples in 1 d at a cost of about $10 each. The new NIR/PLS rapid analysis methods can also be used to support a variety of research projects that would have been too costly to pursue by traditional methods.  相似文献   
985.
The equilibrium constants, K 2, have been determined for the proton-transfer reactions of 1-phenacylquinolinium ion, PHQ+, with several amines {triethylamine (TEA), N,N,N,N′-tetramethylethylenediamine (ED), N,N,N′, N′-tetramethylpropanediamine (PD), N,N,N,N′-tetramethylbutanediamine (BD), and 1,8-bis(dimethylamino-naphthalene (DMAN)} in acetonitrile (AN), AN-tetrahydrofuran (THF) and AN-ethanol (EtOH) mixtures. The reaction was followed spectrophotometrically using a stopped-flow technique. The K 2 value decreased for DMAN and increased for TEA with increasing vol-% of THF in AN-THF mixtures. The changes in the K 2 value for ED, PD and BD changed in the order: ED, PD and BD from a pattern similar to TEA to a pattern similar to DMAN. The change in the K 2 value for DMAN with increasing vol-% of THF in AN-THF mixtures was explained by the effect of polarity on the stability of PQ+ (the deprotonated product of PHQ+). The effect of THF on the K 2 value is consistent with that of the peak wavelength of the absorption spectrum of PQ+. The change in the K 2 value for TEA, ED, PD and BD depended on the structures of the protonated bases, one of the products for this reaction. The effect of EtOH on the K 2 value for DMAN was examined in ternary EtOH-THF-AN mixtures that contain different amounts of EtOH and whose relative permittivities were adjusted to that of EtOH. The K 2 value increased with increasing vol-% of EtOH because of the stabilization of PQ+ upon the formation of the hydrogen-bonded complex with EtOH. The absorption spectrum of PQ+ demonstrated a blue shift as the vol-% of EtOH increased.  相似文献   
986.
The total energy of all π-electrons in a conjugated hydrocarbon (within the framework of HMO approximation) is the sum of the absolute value of all the eigenvalues of its corresponding graph. In this paper, we consider “double hexagonal chains” as benzenoids constructed by successive fusions of successive naphthalenes along a zig–zag sequence of triples of edges as appear on opposite sides of each naphthalene unit. It is shown that if the fusions are such as to give a polyaceacene then the total π-electron energy is the minimum from among all the double hexagonal chains with the same number of naphthalene units.   相似文献   
987.
Protein film voltammetry has been employed to define multiple catalytic consequences of proton coupled electron transfer (PCET) in a cytochrome c nitrite reductase. Current-potential profiles reflecting the steady-state rate of nitrite-limited reduction have been defined from pH 4 to 8. Lowering the electrode potential at pH 8 causes the catalytic current to increase and then decrease before it takes a value independent of any further lowering of electrode potential. By comparison, at pH 4, catalysis is initiated at more positive electrode potentials in an approximately sigmoidal fashion with no attenuation of the catalytic rate evident at more negative electrode potentials. The results show that activity is turned on by the coupled transfer of two electrons and one proton to the enzyme. The decreased rate of catalysis at lower electrode potentials under more alkaline conditions shows that this rate attenuation occurs only when reduction is not coupled to compensating protonation(s) of the enzyme. Sites within the enzyme whose reduction and/or protonation may contribute to the definition of these activities are discussed.  相似文献   
988.
Polymers were synthesized from substituted phenolic and aromatic amine compounds with hydrogen peroxide as the source of an oxidizing agent and horseradish peroxidase enzyme as the catalyst. The polymerization reaction was carried out in a monophasic organic solvent with small amounts of water at room temperature. Conditions for the synthesis of polymers with respect to reaction time and yield were studied with a number of monomers at different concentrations and in solvents with different buffers with pH range of 5.0–7.5. Physical and chemical properties of these homo-and copolymers were determined with respect to melting point, solubility, elemental analysis, molecular weight distribution, infrared absorption (including FTIR), solid-state 13C nuclear magnetic resonance, thermal gravimetric analysis, and differential scanning calorimetry. The enzyme catalyzed reactions produced polymers of molecular weight greater than 400,000 which were further fractionated by differential solubility in solvent mixtures and the molecular weight distribution of the polymer fractions were determined. In general, the polymers synthesized have low solubilities, high melting points, and some degree of branching.  相似文献   
989.
Peptides attached to a cysteine hydrazide ‘transporter module’ are transported selectively in either direction between two chemically similar sites on a molecular platform, enabled by the discovery of new operating methods for a molecular transporter that functions through ratcheting. Substrate repositioning is achieved using a small-molecule robotic arm controlled by a protonation-mediated rotary switch and attachment/release dynamic covalent chemistry. A polar solvent mixtures were found to favour Z to E isomerization of the doubly-protonated switch, transporting cargo in one direction (arbitrarily defined as ‘forward’) in up to 85% yield, while polar solvent mixtures were unexpectedly found to favour E to Z isomerization enabling transport in the reverse (‘backward’) direction in >98% yield. Transport of the substrates proceeded in a matter of hours (compared to 6 days even for simple cargoes with the original system) without the peptides at any time dissociating from the machine nor exchanging with others in the bulk. Under the new operating conditions, key intermediates of the switch are sufficiently stabilized within the macrocycle formed between switch, arm, substrate and platform that they can be identified and structurally characterized by 1H NMR. The size of the peptide cargo has no significant effect on the rate or efficiency of transport in either direction. The new operating conditions allow detailed physical organic chemistry of the ratcheted transport mechanism to be uncovered, improve efficiency, and enable the transport of more complex cargoes than was previously possible.

Peptides are transported in either direction between chemically similar sites on a molecular platform, substrate repositioning is achieved using a cysteine hydrazide transporter module and a small-molecule robotic arm controlled by a rotary switch.  相似文献   
990.
Metal–organic frameworks are promising materials for applications such as gas capture, separation, and storage, due to their ability to selectively adsorb small molecules. The metal–organic framework CuI-MFU-4l, which contains coordinatively unsaturated copper(i) centers, can engage in backbonding interactions with various small molecule guests, motivating the design of frameworks that engage in backbonding and other electronic interactions for highly efficient and selective adsorption. Here, we examine several gases expected to bind to the open copper(i) sites in CuI-MFU-4l via different electronic interactions, including σ-donation, π-backbonding, and formal electron transfer. We show that in situ Cu L-edge near edge X-ray absorption fine structure (NEXAFS) spectroscopy can elucidate π-backbonding by directly probing excitations to unoccupied backbonding orbitals with Cu d-character, even for gases that participate in other dominant interactions, such as ligand-to-metal σ-donation. First-principles calculations based on density functional theory and time-dependent density functional theory additionally reveal the backbonding molecular orbitals associated with these spectroscopic transitions. The energies of the transitions correlate with the energy levels of the isolated small molecule adsorbates, and the transition intensities are proportional to the binding energies of the guest molecules within CuI-MFU-4l. By elucidating the molecular and electronic structure origins of backbonding interactions between electron rich metal centers in metal–organic frameworks and small molecule guests, it is possible to develop guidelines for further molecular-level design of solid-state adsorbents for energy-efficient separations of relevance to industry.

In situ near edge X-ray absorption fine structure spectroscopy directly probes unoccupied states associated with backbonding interactions between the open metal site in a metal–organic framework and various small molecule guests.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号