首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   142篇
  免费   8篇
  国内免费   3篇
化学   133篇
晶体学   1篇
力学   1篇
数学   15篇
物理学   3篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2019年   2篇
  2016年   4篇
  2015年   6篇
  2014年   2篇
  2013年   3篇
  2012年   13篇
  2011年   14篇
  2010年   5篇
  2009年   4篇
  2008年   16篇
  2007年   10篇
  2006年   8篇
  2005年   22篇
  2004年   8篇
  2003年   10篇
  2002年   9篇
  2000年   4篇
  1998年   2篇
  1997年   2篇
  1996年   3篇
  1978年   1篇
排序方式: 共有153条查询结果,搜索用时 15 毫秒
91.
 In this paper, we investigate the class of numeration systems and we study the associated dynamical systems, called odometers. It is shown that these odometers are measure-theoretically isomorphic to rank one transformations on the unit interval, constructed by a cutting-stacking method. Furthermore, a symbolic coding leads to isomorphic shift systems arising from substitutions. Some skew products of the odometers by cocycles related to the sum of digits are shown to be ergodic.  相似文献   
92.
We present an algorithm which uses the analytic parameterization of elliptic curves to rapidly calculate torsion subgroups, and calculate its running time. This algorithm is much faster than the “traditional” Lutz–Nagell algorithm used by most computer algebra systems to calculate torsion subgroups. Received: 7 August 1997 / Revised version: 28 November 1997  相似文献   
93.
Bis(imino)pyridine pincer ligands in conjunction with two isothiocyanate ligands have been used to prepare two mononuclear Co(II) complexes. Both complexes have a distorted square-pyramidal geometry with the Co(II) centers lying above the basal plane. This leads to significant spin-orbit coupling for the d(7) Co(II) ions and consequently to slow relaxation of the magnetization that is characteristic of Single-Molecule Magnet (SMM) behavior.  相似文献   
94.
Physically cross-linked, fibrillar hydrogel networks are formed by the self-assembly of β-hairpin peptide molecules with varying degrees of strand asymmetry. The peptide registry in the self-assembled state can be used as a design element to generate fibrils with twisting, nontwisting, or laminated morphology. The mass density of the networks varies significantly, and can be directly related to the local fibrillar morphology as evidenced by small angle neutron scattering (SANS) and in situ substantiation using cryogenic transmission electron microscopy (cryo-TEM) under identical concentrations and conditions. Similarly, the density of the network is dependent on changes in the peptide concentration. Bulk rheological properties of the hydrogels can be correlated to the fibrillar nanostructure, with the stiffer, laminated fibrils forming networks with a higher G' as compared to the flexible, singular fibrillar networks.  相似文献   
95.
96.
Force field parameters specifically optimized for residues important in the study of RNA catalysis are derived from density-functional calculations, in a fashion consistent with the CHARMM27 all-atom empirical force field. Parameters are presented for residues that model reactive RNA intermediates and transition state analogs, thio-substituted phosphates and phosphoranes, and bound Mg(2+) and di-metal bridge complexes. Target data was generated via density-functional calculations at the B3LYP/6-311++G(3df,2p)// B3LYP/6-31++G(d,p) level. Partial atomic charges were initially derived from CHelpG electrostatic potential fitting and subsequently adjusted to be consistent with the CHARMM27 charges. Lennard-Jones parameters were determined to reproduce interaction energies with water molecules. Bond, angle, and torsion parameters were derived from the density-functional calculations and renormalized to maintain compatibility with the existing CHARMM27 parameters for standard residues. The extension of the CHARMM27 force field parameters for the nonstandard biological residues presented here will have considerable use in simulations of ribozymes, including the study of freeze-trapped catalytic intermediates, metal ion binding and occupation, and thio effects.  相似文献   
97.
The equilibrium morphological behavior of a series of conformationally asymmetric linear diblock copolymers is characterized via small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). The linear diblock molecules of polyisoprene and poly(t-butylmethacrylate) (PtBMA) are prepared anionically over a range of PtBMA volume fractions 0.17 to 0.85. Solution light-scattering experiments are performed on PtBMA homopolymer at theta conditions, and the results were compared with PI data in the literature in order to characterize the degree of conformational asymmetry between the respective blocks. This conformational asymmetry is quantified by an ε of 0.75. The experimental results are compared with morphological behavior calculated utilizing self-consistent mean field theory for a diblock system with ε = 0.75. At middle to high PtBMA volume fractions, ϕPtBMA > 0.30, the experimental morphological behavior agrees well with the calculated behavior; the microphase boundaries are slightly shifted to higher volume fractions of the PtBMA block due to its larger Kuhn length. At ϕPtBMA < 0.30, however, discrepancies are found in the volume fraction dependence of experimentally determined morphological behavior and that calculated theoretically. Interestingly, extremely well-ordered cylindrical microstructures were observed for PI cylinder domains embedded in PtBMA matrices; these samples were prepared by solvent casting with no treatment, such as shearing, to enhance long-range order. These well-ordered cylinder structures contrast with PtBMA cylinders in a PI matrix on the opposite side of the phase diagram that have very poor long-range order. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 2629–2643, 1997  相似文献   
98.
Benchmark calculations of proton affinities and gas-phase basicities of molecules most relevant to biological phosphoryl transfer reactions are presented and compared with available experimental results. The accuracy of proton affinity and gas-phase basicity results obtained from several multi-level model chemistries (CBS-QB3, G3B3, and G3MP2B3) and density-functional quantum models (PBE0, B1B95, and B3LYP) are assessed and compared. From these data, a set of empirical bond enthalpy, entropy, and free energy corrections are introduced that considerably improve the accuracy and predictive capability of the methods. These corrections are applied to the prediction of proton affinity and gas-phase basicity values of important biological phosphates and phosphoranes for which experimental data does not currently exist. Comparison is made with results from semiempirical quantum models that are commonly employed in hybrid quantum mechanical/molecular mechanical simulations. Data suggest that the design of improved semiempirical quantum models with increased accuracy for relative proton affinity values is necessary to obtain quantitative accuracy for phosphoryl transfer reactions in solution, enzymes, and ribozymes.  相似文献   
99.
The mechanism by which the unique toroidal supramolecular assemblies were formed for triblock copolymers of acrylic acid (AA), methyl acrylate (MA), and styrene (S), PAA99-b-PMA73-b-PS66, was probed in this study by investigating the influences of the block copolymer compositions and sequences. Two triblock copolymers, PAA99-b-PMA73-b-PS66 and PAA99-b-PS76-b-PMA62, and two diblock copolymers, PAA99-b-PMA155 and PAA99-b-PS133, were studied under experimental solution-state conditions that involved a range of solvent/nonsolvent (tetrahydrofuran/water) compositions, each in the presence of 2,2'-(ethylenedioxy)bis(ethylamine). The resulting morphologies were determined by transmission electron microscopy. The failures to afford toroidal supramolecular assemblies from both diblock copolymers having comparable lengths of the total hydrophobic chain segment, either entirely PMA or entirely PS, and from the triblock copolymer having a reversed connection sequence for the hydrophobic (PMA and PS) segments demonstrate the unique self-assembly behaviors of triblock copolymers and the importance of the block copolymer sequence.  相似文献   
100.
Pseudorotation reactions of biologically relevant oxyphosphoranes were studied by using density functional and continuum solvation methods. A series of 16 pseudorotation reactions involving acyclic and cyclic oxyphosphoranes in neutral and monoanionic (singly deprotonated) forms were studied, in addition to pseudorotation of PF5. The effect of solvent was treated by using three different solvation models for comparison. The barriers to pseudorotation ranged from 1.5 to 8.1 kcal mol(-1) and were influenced systematically by charge state, apicophilicity of ligands, intramolecular hydrogen bonding, cyclic structure and solvation. Barriers to pseudorotation for monoanionic phosphoranes occur with the anionic oxo ligand as the pivotal atom, and are generally lower than for neutral phosphoranes. The OCH3 groups were observed to be more apicophilic than OH groups, and hence pseudorotations that involve axial OCH3/equatorial OH exchange had higher reaction and activation free energy values. Solvent generally lowered barriers relative to the gas-phase reactions. These results, together with isotope 18O exchange experiments, support the assertion that dianionic phosphoranes are not sufficiently long-lived to undergo pseudorotation. Comparison of the density functional results with those from several semiempirical quantum models highlight a challenge for new-generation hybrid quantum mechanical/molecular mechanical potentials for non-enzymatic and enzymatic phosphoryl transfer reactions: the reliable modeling of pseudorotation processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号