首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25074篇
  免费   308篇
  国内免费   171篇
化学   15708篇
晶体学   301篇
力学   621篇
数学   4651篇
物理学   4272篇
  2023年   199篇
  2022年   331篇
  2021年   475篇
  2020年   595篇
  2019年   615篇
  2018年   401篇
  2017年   323篇
  2016年   779篇
  2015年   616篇
  2014年   734篇
  2013年   1300篇
  2012年   1463篇
  2011年   1704篇
  2010年   923篇
  2009年   799篇
  2008年   1316篇
  2007年   1281篇
  2006年   1332篇
  2005年   1232篇
  2004年   1062篇
  2003年   794篇
  2002年   819篇
  2001年   289篇
  2000年   246篇
  1999年   255篇
  1998年   235篇
  1997年   235篇
  1996年   318篇
  1995年   197篇
  1994年   206篇
  1993年   202篇
  1992年   185篇
  1991年   180篇
  1990年   143篇
  1989年   141篇
  1988年   148篇
  1987年   149篇
  1985年   208篇
  1984年   230篇
  1983年   155篇
  1982年   207篇
  1981年   245篇
  1980年   225篇
  1979年   182篇
  1978年   219篇
  1977年   174篇
  1976年   162篇
  1975年   177篇
  1974年   160篇
  1973年   160篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
This paper deals with the identification of stiffness and damping properties of vibrating structures by an inverse method inspired from the Force Analysis Technique (FAT). The proposed approach uses a local equation of motion assumed a priori, which provides a relative straightforward relationship between the displacement field and material properties. The spatial derivatives of the displacement in the equation are calculated using finite differences. As this operation amplifies measurement noise, a regularization step is applied before solving the inverse problem. A procedure is proposed to automatically adjust the level of regularization. The method also allows one to identify local stiffness and damping on a heterogeneous structure. Illustrations for both homogeneous and heterogeneous cases are shown using simulated and measured displacement fields.  相似文献   
92.
Multivariate methods for discrimination were used in the comparison of brain activation patterns between groups of cognitively normal women who are at either high or low Alzheimer's disease risk based on family history and apolipoprotein-E4 status. Linear discriminant analysis (LDA) was preceded by dimension reduction using principal component analysis (PCA), partial least squares (PLS) or a new oriented partial least squares (OrPLS) method. The aim was to identify a spatial pattern of functionally connected brain regions that was differentially expressed by the risk groups and yielded optimal classification accuracy. Multivariate dimension reduction is required prior to LDA when the data contain more feature variables than there are observations on individual subjects. Whereas PCA has been commonly used to identify covariance patterns in neuroimaging data, this approach only identifies gross variability and is not capable of distinguishing among-groups from within-groups variability. PLS and OrPLS provide a more focused dimension reduction by incorporating information on class structure and therefore lead to more parsimonious models for discrimination. Performance was evaluated in terms of the cross-validated misclassification rates. The results support the potential of using functional magnetic resonance imaging as an imaging biomarker or diagnostic tool to discriminate individuals with disease or high risk.  相似文献   
93.
Heating due to high power 1H decoupling limits the experimental lifetime of protein samples for solid-state NMR (SSNMR). Sample deterioration can be minimized by lowering the experimental salt concentration, temperature or decoupling fields; however, these approaches may compromise biological relevance and/or spectroscopic resolution and sensitivity. The desire to apply sophisticated multiple pulse experiments to proteins therefore motivates the development of probes that utilize the RF power more efficiently to generate a high ratio of magnetic to electric field in the sample. Here a novel scroll coil resonator structure is presented and compared to a traditional solenoid. The scroll coil is demonstrated to be more tolerant of high sample salt concentrations and cause less RF-induced sample heating. With it, the viable experimental lifetime of a microcrystalline ubiquitin sample has been extended by more than an order of magnitude. The higher B1 homogeneity and permissible decoupling fields enhance polarization transfer efficiency in 15N-13C correlation experiments employed for protein chemical shift assignments and structure determination.  相似文献   
94.
New techniques for evaluating the incendiary behavior of insulators is presented. The onset of incendive brush discharges in air is evaluated using standard spark probe techniques for the case simulating approaches of an electrically grounded sphere to a charged insulator in the presence of a flammable atmosphere. However, this standard technique is unsuitable for the case of brush discharges that may occur during the charging–separation process for two insulator materials. We present experimental techniques to evaluate this hazard in the presence of a flammable atmosphere which is ideally suited to measure the incendiary nature of micro-discharges upon separation, a measurement never before performed. Other measurement techniques unique to this study include: surface potential measurements of insulators before, during and after contact and separation, as well as methods to verify fieldmeter calibrations using a charge insulator surface opposed to standard high voltage plates.  相似文献   
95.
Similarity-Projection structures abstract the numerical properties of real scalar product of rays and projections in Hilbert spaces to provide a more general framework for Quantum Physics. They are characterized by properties that possess direct physical meaning. They provide a formal framework that subsumes both classical Boolean logic concerned with sets and subsets and quantum logic concerned with Hilbert space, closed subspaces and projections. They shed light on the role of the phase factors that are central to Quantum Physics. The generalization of the notion of a self-adjoint operator to SP-structures provides a novel notion that is free of linear algebra. This work was partially supported by the Jean and Helene Alfassa fund for research in Artificial Intelligence.  相似文献   
96.
Development of hyperpolarized technology utilizing dynamic nuclear polarization has enabled the measurement of 13C metabolism in vivo at very high signal-to-noise ratio (SNR). In vivo mitochondrial metabolism can, in principle, be monitored with pyruvate, which is catalyzed to acetyl-CoA via pyruvate dehydrogenase (PDH). The purpose of this work was to determine whether the compound sodium dichloroacetate (DCA) could aid the study of mitochondrial metabolism with hyperpolarized pyruvate. DCA stimulates PDH by inhibiting its inhibitor, pyruvate dehydrogenase kinase. In this work, hyperpolarized [1-13C]pyruvate and [2-13C]pyruvate were used to probe mitochondrial metabolism in normal rats. Increased conversion to bicarbonate (+ 181±69%, P=.025) was measured when [1-13C]pyruvate was injected after DCA administration, and increased glutamate (+ 74±23%, P=.004), acetoacetate (+ 504±281%, P=.009) and acetylcarnitine (+ 377±157%, P=.003) were detected when [2-13C]pyruvate was used.  相似文献   
97.
We find and investigate the structure of solutions to the Ginzburg Landau equation for a high temperature superconductor with tetragonal symmetry. This is done near an isolated, rotationally symmetric d-wave vortex state with its core at the origin defined on all of \mathbbR2{\mathbb{R}^2}. We prove that the solution’s s-wave component nucleates near the vortex core for temperatures just below the d-wave critical temperature. We further show that this causes the rotational symmetry to break and that the solution develops a fourfold symmetry with respect to a rotation by an angle of \fracp2{\frac{\pi}{2}}.  相似文献   
98.
Silver nanoparticles were produced by laser ablation of a continuously flowing aerosol of microparticles in nitrogen at varying laser fluences. Transmission electron micrographs were analyzed to determine the effect of laser fluence on the nanoparticle size distribution. These distributions exhibited bimodality with a large number of particles in a mode at small sizes (3–6-nm) and a second, less populated mode at larger sizes (11–16-nm). Both modes shifted to larger sizes with increasing laser fluence, with the small size mode shifting by 35% and the larger size mode by 25% over a fluence range of 0.3–4.2-J/cm2. Size histograms for each mode were found to be well represented by log-normal distributions. The distribution of mass displayed a striking shift from the large to the small size mode with increasing laser fluence. These results are discussed in terms of a model of nanoparticle formation from two distinct laser–solid interactions. Initially, laser vaporization of material from the surface leads to condensation of nanoparticles in the ambient gas. Material evaporation occurs until the plasma breakdown threshold of the microparticles is reached, generating a shock wave that propagates through the remaining material. Rapid condensation of the vapor in the low-pressure region occurs behind the traveling shock wave. Measurement of particle size distributions versus gas pressure in the ablation region, as well as, versus microparticle feedstock size confirmed the assignment of the larger size mode to surface-vaporization and the smaller size mode to shock-formed nanoparticles.  相似文献   
99.
The results of studies of shallow donors and deep-level color centers in bulk AlN crystals are presented. Two shallow donors (presumably oxygen located on the nitrogen site and carbon located on the aluminum site) are suggested to exhibit the DX-relaxation. Third shallow donor (presumably silicon on the Al site) shows the shallow donor behavior up to the room temperature and can be observed without light excitation at temperatures above 200 K. The values of the Bohr radius of the shallow donors are estimated. The structure of deep-level color centers (neutral nitrogen vacancy V N) in bulk AlN crystals is determined and analyzed by electron paramagnetic resonance, electron-nuclear double resonance, optical absorption and thermoluminescence induced by X-ray irradiation. Spin-dependent recombination processes in AlN crystals are studied by means of optically detected magnetic resonance.  相似文献   
100.
We propose a novel approach to continuum modeling of the dynamics of crystal surfaces. Our model follows the evolution of an ensemble of step configurations, which are consistent with the macroscopic surface profile. Contrary to the usual approach where the continuum limit is achieved when typical surface features consist of many steps, our continuum limit is approached when the number of step configurations of the ensemble is very large. The model can handle singular surface structures such as corners and facets. It has a clear computational advantage over discrete models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号