首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   0篇
化学   48篇
晶体学   1篇
力学   3篇
数学   8篇
物理学   35篇
  2021年   2篇
  2020年   3篇
  2014年   3篇
  2013年   5篇
  2012年   4篇
  2011年   4篇
  2010年   4篇
  2009年   5篇
  2008年   4篇
  2007年   8篇
  2006年   6篇
  2005年   4篇
  2004年   5篇
  2003年   6篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1996年   1篇
  1994年   2篇
  1993年   5篇
  1992年   4篇
  1991年   3篇
  1980年   2篇
  1973年   1篇
  1972年   1篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1942年   2篇
  1941年   2篇
排序方式: 共有95条查询结果,搜索用时 15 毫秒
51.
Compressional stress pulses have been propagated in plasteline-clay rods by detonating small charges of lead azide at one end. A capacitance gage at the other end was used to measure particle displacement associated with the pulses and the particle velocity was obtained by differentiation. The shapes and amplitudes of the pulses were determined in separate experiments using composite clay-steel rods where the steel acted, in effect, as a pressure transducer. The techniques employed permitted comparatively accurate determination of some aspects of the dynamic behavior of clay. On the basis of preliminary results, the behavior of clay has been compared to that of a linear viscoelastic solid with the tentative goal of studying the validity of a viscoelastic constitutive model.  相似文献   
52.
Dihydroxyacetone (DHA) has been proposed as a potential alternative to dansyl chloride for use as a fluorescence marker on skin to assess stratum corneum turnover time in vivo. However, the fluorescence from DHA on skin has not been adequately studied. To address this void, a noninvasive, noncontact spectral imaging system is used to characterize the fluorescence spectrum of DHA on skin in vivo and to determine the optimal wavelengths over which to collect the DHA signal that minimizes the contributions from skin autofluorescence. The DHA-skin fluorescence signal dominates the 580-680 nm region of the visible spectrum when excited with ultraviolet radiation in the 320-400 nm wavelength region (UVA). An explanation of the time-dependent spectral features is proposed in terms of DHA polymerization and binding to skin.  相似文献   
53.
Developing a better mechanistic understanding of membrane protein folding is urgently needed because of the discovery of an increasing number of human diseases, where membrane protein instability and misfolding is involved. Towards this goal, we investigated folding and stability of 7-transmembrane (TM) helical bundles by computational methods. We compared the results of three different algorithms for predicting changes in stability of proteins against an experimental mutation dataset obtained for bacteriorhodopsin (BR) and mammalian rhodopsin and find that 61.6% and 70.6% of the mutation results can potentially be explained by known local contributors to the stability of the folded state of BR and mammalian rhodopsin, respectively. To obtain further information on the predicted folding pathway of 7-TM proteins, we conducted simulated thermal unfolding experiments of all available rhodopsin structures with resolution better than 3 angstroms using the Floppy Inclusions and Rigid Substructure Topography (FIRST) method (Jacobs, D. J., A. J. Rader, L. A. Kuhn and M. F. Thorpe [2001] Proteins 44, 150) described previously for a single mammalian rhodopsin structure (Rader et al. [2004] PNAS 101, 7246). In statistical comparison we found that structures of mammalian rhodopsin have a stability core that is characterized by long-range interactions involving amino acids close in space but distant in sequence comprising positions from both extracellular loop and TM regions. In contrast, BR-simulated unfolding does not reveal such a core but is dominated by interactions within individual and groups of TM helices, consistent with the two-stage hypothesis of membrane protein folding. Similar results were obtained for halo- and sensory rhodopsins as for BRs. However, the average folding core energies of sensory rhodopsins were in between those observed for mammalian rhodopsins and BRs hinting at a possible evolution of these structures toward a rhodopsin-like behavior. These results support the conclusion that although the two-stage model can explain the mechanisms of folding and stability of BR, it fails to account for the folding and stability of mammalian rhodopsin, even though the two proteins are structurally related.  相似文献   
54.
Cell flipping in VLSI design is an operation in which some of the cells are replaced with their “mirror images” with respect to a vertical axis, while keeping them in the same slot. After the placement of all the cells, one can apply cell flipping in order to further decrease the total area, approximating this objective by minimizing total wire length, channel width, etc. However, finding an optimal set of cells to be flipped is usually a difficult problem. In this paper we show that cell flipping can be efficiently applied to minimize channel density in the standard cell technology. We show that an optimal flipping pattern can be found in O(p(n/c)c) time, where n, p and c denote the number of nets, pins and channels, respectively. Moreover, in the one channel case (i.e. when c = 1) the cell flipping problem can be solved in O(p log n) time. For the multi-channel case we present both an exact enumeration scheme and a mixed-integer program that generates an approximate solution very quickly. We present computational results on examples up to 139 channels and 65000 cells.  相似文献   
55.
The accuracy, repeatability, and reproducibility characteristics of a method using multitoxin immunoaffinity column cleanup with liquid chromatography (LC) for determination of aflatoxins (AF; sum of aflatoxins B1, B2, G1, and G2) and ochratoxin A (OTA) in powdered ginseng and ginger have been established in a collaborative study involving 13 laboratories from 7 countries. Blind duplicate samples of blank, spiked (AF and OTA added) at levels ranging from 0.25 to 16.0 microg/kg for AF and 0.25 to 8.0 microg/kg for OTA were analyzed. A naturally contaminated powdered ginger sample was also included. Test samples were extracted with methanol and 0.5% aqueous sodium hydrogen carbonate solution (700 + 300, v/v). The extract was centrifuged, diluted with phosphate buffer (PB), filtered, and applied to an immunoaffinity column containing antibodies specific for AF and OTA. After washing the column with water, the toxins were eluted from the column with methanol, and quantified by high-performance LC with fluorescence detection. Average recoveries of AF from ginseng and ginger ranged from 70 to 87% (at spiking levels ranging from 2 to 16 microg/kg), and of OTA, from 86 to 113% (at spiking levels ranging from 1 to 8 microg/kg). Relative standard deviations for within-laboratory repeatability (RSDr) ranged from 2.6 to 8.3% for AF, and from 2.5 to 10.7% for OTA. Relative standard deviations for between-laboratory reproducibility (RSDR) ranged from 5.7 to 28.6% for AF, and from 5.5 to 10.7% for OTA. HorRat values were < or = 2 for the multi-analytes in the 2 matrixes.  相似文献   
56.
57.
58.
Quantum well states of sp-type in thin metal layers of aluminum on the W(110) surface were experimentally studied by angle-resolved photoelectron spectroscopy depending on the layer thickness in a range of about 1–15 monolayers. It is shown that the aluminum layer is formed in accordance with the Kurdyumov-Sachs orientation relationship. Modification of the quantum well state spectra is observed with the increase in the layer thickness. The changes of the energy of quantum well states with the formation of each new monolayer have a stepwise character. This behavior can be used to calibrate the thickness of the deposited film with an accuracy within fractions of a monolayer. To confirm the reliability of the calibration, the thickness of the formed layers was tested using the attenuation of the W4f 7/2 peak intensity.  相似文献   
59.
The substrate-induced spin-orbit splitting of interface and quantum-well states formed in Au, Ag, and Cu layers on W(110) and Mo(110) surfaces has been revealed using angle- and spin-resolved photoelectron spectroscopy. It has been shown that the magnitude of the splitting depends noticeably on the atomic number of the substrate material and is markedly larger for layers of these metals on W(110), i.e., on the surface of a metal with a larger atomic number (Z W = 74), than on the surface of Mo(110), i.e., an element with a smaller atomic number (Z Mo = 42), while depending only weakly on the atomic number of the adsorbed metal. Measurements of the dispersion of the formed quantum-well states have shown that the substrate-induced spin-orbit splitting increases with increasing parallel component of the photoelectron momentum (which correlates with the Rashba model) for all thicknesses of deposited films (up to 10 ML). The magnitude of induced spin-orbit splitting of the interface states evolving in monolayer Au, Ag, and Cu coatings on W(110) and Mo(110) decreases with increasing parallel component of the excited photoelectron momentum.  相似文献   
60.
The adverse effects of dietary trans fat on biomarkers of chronic disease are well documented. Regulatory authorities in many countries have enacted legislation aimed at reducing trans fat content of their food supplies, either by requiring trans fat labeling on pre-packaged foods or by limiting the amount of trans fat in oils used for food production. Increased use by the food industry of oils with a low trans fat content necessitates reevaluation of official methods used by the food industry and regulatory agencies for the determination of total trans fat. Attenuated total reflection–Fourier-transform infrared (ATR–FTIR) spectroscopy and gas chromatography with flame ionization detection (GC–FID) are two techniques used in official methods approved by method-endorsing organizations, for example AOAC International and the American Oil Chemists’ Society. Here, we review current official ATR–FTIR and GC–FID methods for determination of trans fat, with a focus on factors affecting quantification of low levels of trans fat. We include new data on method performance that have only recently become available, and provide an overview of notable recent developments in lipid analysis (e.g. IR spectroscopy procedures, ionic-liquid GC columns, and multidimensional chromatographic techniques) that have the potential to substantially improve the accuracy, sensitivity, and/or speed of trans fat determination.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号