首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3632篇
  免费   85篇
  国内免费   17篇
化学   2214篇
晶体学   12篇
力学   85篇
数学   524篇
物理学   899篇
  2021年   38篇
  2020年   40篇
  2019年   50篇
  2018年   30篇
  2017年   35篇
  2016年   66篇
  2015年   48篇
  2014年   61篇
  2013年   144篇
  2012年   161篇
  2011年   170篇
  2010年   104篇
  2009年   76篇
  2008年   162篇
  2007年   159篇
  2006年   142篇
  2005年   171篇
  2004年   111篇
  2003年   128篇
  2002年   93篇
  2001年   90篇
  2000年   76篇
  1999年   57篇
  1998年   45篇
  1997年   53篇
  1996年   50篇
  1995年   63篇
  1994年   56篇
  1993年   63篇
  1992年   51篇
  1991年   50篇
  1990年   50篇
  1989年   34篇
  1988年   38篇
  1987年   30篇
  1986年   35篇
  1985年   61篇
  1984年   44篇
  1983年   34篇
  1982年   34篇
  1981年   42篇
  1980年   39篇
  1979年   55篇
  1978年   43篇
  1977年   50篇
  1976年   50篇
  1975年   46篇
  1974年   48篇
  1973年   54篇
  1972年   34篇
排序方式: 共有3734条查询结果,搜索用时 140 毫秒
121.
3‐(Phenylsulfonyl)benzo[a]heptalene‐2,4‐diols 1 can be desulfonylated with an excess of LiAlH4/MeLi?LiBr in boiling THF in good yields (Scheme 6). When the reaction is run with LiAlH4/MeLi, mainly the 3,3′‐disulfides 6 of the corresponding 2,4‐dihydroxybenzo[a]heptalene‐3‐thiols are formed after workup (Scheme 7). However, the best yields of desulfonylated products are obtained when the 2,4‐dimethoxy‐substituted benzo[a]heptalenes 2 are reduced with an excess of LiAlH4/TiCl4 at ?78→20° in THF (Scheme 10). Attempts to substitute the PhSO2 group of 2 with freshly prepared MeONa in boiling THF led to a highly selective ether cleavage of the 4‐MeO group, rather than to desulfonylation (Scheme 13).  相似文献   
122.
Photolysis of 3-Methyl-2, 1-benzisoxazole (3-Methylanthranil) and 2-Azido-acetophenone in the Presence of Sulfuric Acid and Benzene Derivatives Irradiation of 3-methylanthranil ( 1 ) in acetonitrile in the presence of sulfuric acid and benzene, toluene, p-xylene, mesitylene or anisole with a mercury high-pressure lamp through a pyrex filter yields beside varying amounts of 2-amino-acetophenone ( 3 ) and 2-amino-5-hydroxy- ( 4a ) and 2-amino-3-hydroxy-acetophenone ( 4b ) the corresponding diphenylamine derivatives 5 (see Table 1). In the case of toluene and anisole mixtures of the corresponding ortho- and para-substituted isomers ( 5b, 5d or 5g, 5i respectively), but no meta-substituted isomers ( 5c or 5h ) are obtained. In addition to these products, the irradiation of 1 in the presence of anisole yields also 2-amino-5-(4′-methoxyphenyl)-acetophenone ( 7 ), 2-amino-3-(4′-methoxyphenyl)-acetophenone ( 8 ) and 2-methoxy-9-methyl-acridine ( 6 ; see Scheme 1). The latter product is also formed thermally by acid catalysis from the diphenylamine derivative 5i . Irradiation of 2-azido-acetophenone ( 2 ) in acetonitrile solution in the presence of sulfuric acid and benzene leads to the formation of 1, 3, 4a, 4b, 5a and 9 (see Table 2). Compounds 3, 4a, 4b and 5a are also obtained after acid catalyzed decomposition of 2 in the presence of benzene. Thus, it is concluded that irradiation of 1 or 2 in the presence of sulfuric acid yields 2-acetyl-phenylnitrenium ions 10 in the singlet ground state which will undergo electrophilic substitution of the aromatic compounds, perhaps via the π-complex 11 (see Scheme 2).  相似文献   
123.
Irradiation of 2, 3-diphenyl-2H-azirine ( 1a ) and 1-azido-1-phenyl-propene, the precursor of 2-methyl-3-phenyl-2H-azirine ( 1b ), in benzene, with a high pressure mercury lamp (pyrex filter) in the presence of acid chlorides yields the oxazoles 5a–d (Scheme 2). Photolysis of 2, 2-dimethyl-3-phenyl-2H-azirine ( 1c ) under the same conditions gives after methanolysis the 5-methoxy-2, 2-dimethyl-4-phenyl-3-oxazolines 7a, b, d , while hydrolysis of the reaction mixture leads to the formation of the 1, 2-diketones 8a, c, d (Scheme 4). The suggested reaction path for all these reactions is a 1, 3-dipolar cycloaddition of the photochemically generated benzonitrilemethylides 2 to the carbonyl double bond of the acid chlorides to give the intermediates 4 , followed by either elimination of hydrogen chloride or solvolysis (Schemes 2 and 4). Irradiation of 1c in the presence of acetic acid anhydride leads via the intermediate 9 to the 5-hydroxy-3-oxazoline 10 and the 5-methylidene-3-oxazoline 11 (Scheme 5).  相似文献   
124.
Chemical processing in the stratospheres of the gas giants is driven by incident vacuum ultraviolet (VUV) light. Ethane is an important constituent in the atmospheres of the gas giants in our solar system. The present work describes translational spectroscopy studies of the VUV photochemistry of ethane using tuneable radiation in the wavelength range 112 ≤ λ ≤ 126 nm from a free electron laser and event-triggered, fast-framing, multi-mass imaging detection methods. Contributions from at least five primary photofragmentation pathways yielding CH2, CH3 and/or H atom products are demonstrated and interpreted in terms of unimolecular decay following rapid non-adiabatic coupling to the ground state potential energy surface. These data serve to highlight parallels with methane photochemistry and limitations in contemporary models of the photoinduced stratospheric chemistry of the gas giants. The work identifies additional photochemical reactions that require incorporation into next generation extraterrestrial atmospheric chemistry models which should help rationalise hitherto unexplained aspects of the atmospheric ethane/acetylene ratios revealed by the Cassini–Huygens fly-by of Jupiter.

The vacuum ultraviolet photodissociation dynamics of ethane provide clues for modelling the atmospheric chemistry of the gas giants.  相似文献   
125.
Enamines 8a-e could be chlorinated by equimolar amounts of N-chlorosuccinimide (9) generating monochloroenamines 10a-e; 10a and 10d were isolated as pure substances. Two equivalents of 9 afforded the dichloroenamines 12a,c from 8a,c. Interaction of the chlorinated enamines 10a-e and 12a,c with cyanide gave morpholino-azabicyclohexane derivatives. 10a-d, thereby, led to exo-cyano-isomers lla-c; 12a,c generated endo-cyano compounds 13a,c. In the case of the ethoxycarbonylated chloroenamine 10e a mixture of diastereomeric products 11e and 14e resulted from the analogous reaction. Reduction of 11a and 14e with lithium aluminum hydride produced a pair of diastereomeric triamines 15 and 16. A tricyclic diazasystem 19 was formed from the reaction of cyanide with the carbamoylated chloroenamine 18. Monochloroenamine 10a and dichloroenamine 12a showed a significant mutagenic behaviour in the Ames test.  相似文献   
126.
1-cis, 2-cis-Dipropenylbenzene (cis, cis- 1 ) isomerises thermally at 215–235° with 1st order kinetics to give trans, cis- 1 and vice versa. At equilibrium 89% trans, cis- and 11% cis, cis- 1 are present. It is shown by thermal rearrangement of cis, cis-2′, 2″-d2- 1 that the isomerisation is attributable to aromatic [1, 7a]-sigmatropic H-shifts. trans, trans- 1 rearranges thermally at 225–245° to yield 2, 3-dimethyl-1, 2-dihydronaphthalene ( 2 ). The formation of 2 can be visualized by disrotatory ring closure followed by an aromatic [1, 5s]-sigmatropic H-shift. 2 is also formed when, cis, cis- or trans, cis- 1 are heated for 153 h at 225°. Besides 2 a small amount (3%) of 1-ethyl-1, 2-dihydronaphthalene ( 5 ) is formed. The rearrangement of trans, trans- 1 and trans, trans-2′, 2″-d2- 1 shows a secondary isotope effect kH/kD = 0,90.  相似文献   
127.
Conductive films of gold were assembled on flexible polymer substrates such as Kapton and polyethylene using a solution-based process. The polymer substrates were modified by using argon plasma and subsequent coupling of silanes with amino- or mercapto- terminal groups. These modified surfaces were examined by X-ray photoelectron spectroscopy and contact angle measurements. Colloidal gold was assembled onto the silane-modified surface from solution. The gold particles are attached to the surface by covalent interactions with the thiol or amine group. Formation of a conductive film is achieved by increasing the coverage of gold by using a "seeding" method to increase the size of the attached gold particles. Field emission scanning electron microscopy was used to follow the growth of the film. The surface resistance of the films, measured using a four-point probe, was about 1 Omega/sq.  相似文献   
128.
Gaseous Acetates Thermoanalytical and mass-spectrometrical observations are undertaken with some acetates and oxiacetates. The volatilization of copper(I) acetate takes place like that of the silver acetate as M2Ac2+ (besides the deposition of Ag). On the volatilization of the anhydrous compounds Cu2Ac4, Cr2Ac4, Rh2Ac4, and Mo2Ac4 in the vacuum of a mass spectrometer is observed that Cu2Ac4 vaporizes dissociative as Cu2Ac2+ (+ 2 “Ac”), while the other compounds vaporize as M2Ac4+ and simultaneously is formed an oxidic (e.g. Cr2O4) or metallic residue. PdAc2 vaporizes in the mass spectrometer as a trimeric molecule Pd3Ac6. M4OAc6, which is formed from the dihydrates, vaporizes in a mass spectrometer with M ? Co, Mn as M4OAc6+. Other complexes of the same type appear as Be4OAc5+, Mg4OAc5+, and Zn4OAc5+.  相似文献   
129.
Polypyridyl complexes of Co decorated with 350-Da polyether chains (Co(350)(2+)) form molten phases of nucleic acids when paired with DNA counterions (Co(350)DNA) or 25-mer oligonucleotides. Analysis of voltammetry and chronoamperometry of mixtures of these phases with complexes having ClO(4)(-) counterions (Co(350)(ClO(4))(2)) and no other diluent provides charge transport rates from the oxidation and reduction currents for the complexes. As the mole fraction of the Co(350)(ClO(4))(2) complex in the mixture is varied from ca. 0.25 to 1, the physical diffusion constants derived from the Co(III/II) wave increase from 1 x 10(-11) cm(2)/s to 5 x 10(-10) cm(2)/s, and apparent diffusion constants dominated by the Co(II/I) electron self-exchange increase from 1 x 10(-10) cm(2)/s to 2 x 10(-8) cm(2)/s. Pure Co(350)DNA melts, containing no Co(350)(ClO(4))(2) complex, do not exhibit recognizable voltammetric waves; DNA suppresses the Co(II/I) electron transfer reactions of Co complexes for which it is the counterion. There are therefore two microscopically distinct kinds of Co(350) complexes, those with DNA and those with ClO(4)(-) counterions, with respect to their Co(II/I) electron-transfer dynamics, leading to percolative behavior in their mixtures. The electron-transfer rates of the Co(II/I) couple are controlled by the diffusive relaxation of the ionic atmosphere around the reaction pair, and the inactivity of the bound Co complexes can be attributed to the very low mobility of the anionic phosphate groups in the DNA counterion. Substitution of sulfonated polystyrene for DNA produced similar results, suggesting that this phenomenon is general to other polymer counterions of low mobility. We conclude that the measured Co(II/I) charge transport and electron-transfer rate constants reflect more the diffusive mobility of the perchlorate counterion than the intrinsic Co(II/I) electron hopping rate.  相似文献   
130.
Orthokinetic aggregation of colloids trapped at the air–liquid interface was studied by direct imaging in a couette cell. This method allowed us to follow the temporal evolution of both the cluster-mass distribution and the cluster structure at a shear rate where Brownian aggregation is suppressed. The interactions between the monodisperse latex particles floating at the air–liquid interface were controlled either by varying the electrolyte concentration or by creating a bidisperse system through the addition of small particles. The results show that the clusters in all of the systems are characterized by a high fractal dimension, indicating that the clusters are rearranged and densified by the shear. Kinetic analysis suggests that aggregation of monodisperse systems mainly proceeds through homogeneous aggregation, i.e., large clusters sticking to other large clusters. The bidisperse system, finally, with a size ratio around 10, favored a more heterogeneous aggregation among small and large clusters throughout the aggregation process; a slightly lower fractal dimension was observed compared to the strongly aggregated monodisperse system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号