首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4159篇
  免费   245篇
  国内免费   21篇
化学   3202篇
晶体学   17篇
力学   80篇
数学   536篇
物理学   590篇
  2023年   52篇
  2022年   73篇
  2021年   84篇
  2020年   135篇
  2019年   109篇
  2018年   63篇
  2017年   79篇
  2016年   174篇
  2015年   150篇
  2014年   175篇
  2013年   199篇
  2012年   305篇
  2011年   257篇
  2010年   149篇
  2009年   141篇
  2008年   227篇
  2007年   215篇
  2006年   188篇
  2005年   197篇
  2004年   183篇
  2003年   121篇
  2002年   155篇
  2001年   66篇
  2000年   60篇
  1999年   51篇
  1998年   58篇
  1997年   50篇
  1996年   54篇
  1995年   38篇
  1994年   32篇
  1993年   31篇
  1992年   42篇
  1991年   24篇
  1990年   27篇
  1989年   33篇
  1988年   33篇
  1987年   30篇
  1986年   23篇
  1985年   27篇
  1984年   31篇
  1983年   26篇
  1982年   21篇
  1981年   38篇
  1980年   24篇
  1979年   21篇
  1978年   17篇
  1977年   27篇
  1976年   11篇
  1975年   12篇
  1970年   13篇
排序方式: 共有4425条查询结果,搜索用时 0 毫秒
151.
Pyridinylazolato (N–N′) ruthenium(II) complexes of the type [(N–N′)RuCl(PMe3)3] have been obtained in high yields by treating the corresponding functionalised azolylpyridines with [RuCl2(PMe3)4] in the presence of a base. 15N NMR spectroscopy was used to elucidate the electronic influence of the substituents attached to the azolyl ring. The findings are in agreement with slight differences in the bond lengths of the ruthenium complexes. Furthermore, the electronic nature of the azolate moiety modulates the catalytic activity of the ruthenium complexes in the hydrogenation of carbon dioxide under supercritical conditions and in the transfer hydrogenation of acetophenone. DFT calculations were performed to shed light on the mechanism of the hydrogenation of carbon dioxide and to clarify the impact of the electronic nature of the pyridinylazolate ligands.  相似文献   
152.
Two near isomeric clusters containing a novel {Mn8W4} Keggin cluster within a [W36Mn10Si4O136(OH)4(H2O)8]24? cluster are reported: K10Li14 [W36Si4O136MnII10(OH)4(H2O)8] ( 1 ) and K10Li13.5Mn0.25[W36Si4O136MnII10(OH)4(H2O)8] ( 1′ ). Bulk characterization of the clusters has been carried out by single crystal X‐ray structure analysis, ICP‐MS, TGA, ESI‐MS, CV and SQUID‐magnetometer analysis. X‐ray analysis revealed that 1′ has eight positions within the central Keggin core that were disordered W/Mn whereas 1 contained no such disorder. This subtle difference is due to a differences is how the two clusters assemble and recrystallize from the same mother liquor and represents a new type of isomerism. The rapid recrystallization process was captured via digital microscopy and this uncovered two “intermediate” types of crystal which formed temporarily and provided nucleation sites for the final clusters to assemble. The intermediates were investigated by single crystal X‐ray analysis and revealed to be novel clusters K4Li22[W36Si4Mn7O136(H2O)8]?56 H2O ( 2 ) and Mn2K8Li14[W36Si4Mn7O136(H2O)8]?45 H2O ( 3 ). The intermediate clusters contained different yet related building blocks to the final clusters which allowed for the postulation of a mechanism of assembly. This demonstrates a rare example where the use X‐ray crystallography directly facilitated understanding the means by which a POM assembled.  相似文献   
153.
154.
A great number of binary neutral phosphorus sulfides was discovered and investigated. However all stable representatives of this family of compounds adopt a polycyclic structure in contrast to their lighter homologues, the nitrogen oxides. Acyclic representatives can be stabilized by adduct formation with a nitrogen base. The bis(pyridine) adduct py2P2S5 of the unstable acyclic phosphorus sulfide P2S5 is readily obtained stirring P4S10 in pyridine at ambient temperature. X‐ray diffraction studies on single crystals of py2P2S5 · 0.5 py ( 1b ) show a N2O5 like structure for the P2S5 framework. The long P–N distances of 1.86 Å indicate only weak coordination of the pyridine molecules to phosphorus. Single crystal X‐ray diffraction studies on py2P2S4.34O0.66 ( 2 ) reveal the presence of py2P2S4O ( 3 ) together with py2P2S5 in the crystal. Compound 3 contains the mixed phosphorus oxide sulfide molecule P2S4O stabilized as bis(pyridine) adduct. It is readily obtained from pyP2S5 by oxidation with KMnO4 in pyridine. The oxygen atom occupies the bridging position between the two phosphorus atoms. Quantum chemical calculations at the MPW1PW91 level of theory as well as DTA/TG thermal analyses confirm the weak coordination of the pyridine molecules in py2P2S5, py2P2S4O, and py2P2S7 to phosphorus.  相似文献   
155.
Treatment of copper(I) chloride with R2Si(NLiPh)2 (R = Me, Ph) in thf led to the formation of the octanuclear cluster compounds [Cu8{(R2Si(NPh)2}4] [R = Me ( 1 ), Ph ( 2 ).] Compound 1 crystallizes in the tetragonal space group P4/n, with a = 1505.41(5) and c = 1911.32(7) pm. The X‐ray crystal structure determination revealed a cube shaped Cu8 cluster core with μ4 bridging Me2Si(NPh)22– ligands. The copper atoms display an almost linear coordination with Cu–N distances in the range of 191.1(3)–191.4(3) pm. The Cu–Cu distances are 265.7(1)–267.3(1) pm. Compound 2 forms monoclinic crystals, space group P21/n, with a = 1461.87(4), b = 2483.77(6), c = 2725.49(8) pm, β = 100.77(1)°. The cluster core of compound 2 consists formally of two mutually perpendicular arranged trigonal prisms, which share a common square face. Like in the case of compound 1 the square faces of the cluster core are capped by μ4 bridging Ph2Si(NPh)22– ligands. The copper atoms adopt a nearly linear N–Cu–N coordination with Cu–N distances of 190.0(4)–195.1(4) pm. The Cu–Cu distances are 252.3(1)–305.6(1) pm.  相似文献   
156.
157.
158.
Extreme halophilic archaea are a yet unexploited source of natural carotenoids. At elevated salinities, however, material corrosivity issues occur and the performance of analytical methods is strongly affected. The goal of this study was to develop a method for identification and downstream processing of potentially valuable bioproducts produced by archaea. To circumvent extreme salinities during analysis, a direct sample preparation method was established to selectively extract both the polar and the nonpolar lipid contents of extreme halophiles with hexane, acetone and the mixture of MeOH/MTBE/water, respectively. Halogenated solvents, as used in conventional extraction methods, were omitted because of environmental considerations and potential process scale-up. The HPLC-MS/MS method using atmospheric pressure chemical ionization was developed and tuned with three commercially available C40 carotenoid standards, covering the wide polarity range of natural carotenoids, containing different number of OH-groups. The chromatographic separation was achieved on a C30 RP-HPLC column with a MeOH/MTBE/water gradient. Polar lipids, the geometric isomers of the C50 carotenoid bacterioruberin, and vitamin MK-8 were the most valuable products found in bioreactor samples. In contrast to literature on shake flask cultivations, no anhydrous analogues of bacterioruberin, as by-products of the carotenoid biosynthesis, were detected in bioreactor samples. This study demonstrates the importance of sample preparation and the applicability of HPLC-MS/MS methods on real samples from extreme halophilic strains. Furthermore, from a biotechnological point-of-view, this study would like to reveal the relevance of using controlled and defined bioreactor cultivations instead of shake flask cultures in the early stage of potential bioproduct profiling.  相似文献   
159.
Based on molecular-specific surface-enhanced Raman scattering (SERS) spectroscopy we were able to discriminate between rough and smooth strains of Escherichia coli and Proteus mirabilis bacteria. For this purpose, bacteria have been immobilized through electrostatic forces by inducing a positive charge on the glass slide. This way, SERS spectra on bacterial biomass and also on single bacteria could be recorded in less than 2 h, by using concentrated silver nanoparticles as SERS-active substrate. Single-bacterium SERS spectral fingerprints showed to be sensitive to the presence of the O-antigen at strain level and to the microorganisms growth phase. By using principal component analysis (PCA) on the SERS spectra recorded from E. coli and P. mirabilis, these two uropathogens could be fairly discriminated.  相似文献   
160.
Protein–protein interactions are of utmost importance to an understanding of biological phenomena since non-covalent and therefore reversible couplings between basic proteins leads to the formation of complex regulatory and adaptive molecular systems. Such systems are capable of maintaining their integrity and respond to external stimuli, processes intimately related to living organisms. These interactions, however, span a wide range of dissociation constants, from sub-nanomolar affinities in tight complexes to high-micromolar or even millimolar affinities in weak, transiently formed protein complexes. Herein, we demonstrate how novel NMR and EPR techniques can be used for the characterization of weak protein–protein (ligand) complexes. Applications to intrinsically disordered proteins and transiently formed protein complexes illustrate the potential of these novel techniques to study hitherto unobserved (and unobservable) higher-order structures of proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号