首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8485篇
  免费   405篇
  国内免费   105篇
化学   5831篇
晶体学   66篇
力学   244篇
综合类   10篇
数学   883篇
物理学   1961篇
  2023年   36篇
  2022年   97篇
  2021年   155篇
  2020年   157篇
  2019年   141篇
  2018年   127篇
  2017年   110篇
  2016年   247篇
  2015年   231篇
  2014年   301篇
  2013年   483篇
  2012年   614篇
  2011年   692篇
  2010年   384篇
  2009年   330篇
  2008年   540篇
  2007年   511篇
  2006年   480篇
  2005年   480篇
  2004年   366篇
  2003年   327篇
  2002年   284篇
  2001年   187篇
  2000年   203篇
  1999年   128篇
  1998年   103篇
  1997年   76篇
  1996年   86篇
  1995年   101篇
  1994年   98篇
  1993年   94篇
  1992年   76篇
  1991年   53篇
  1990年   59篇
  1989年   47篇
  1988年   36篇
  1987年   41篇
  1986年   32篇
  1985年   40篇
  1984年   36篇
  1983年   20篇
  1982年   38篇
  1981年   33篇
  1980年   29篇
  1979年   44篇
  1978年   35篇
  1977年   36篇
  1976年   31篇
  1975年   25篇
  1974年   29篇
排序方式: 共有8995条查询结果,搜索用时 15 毫秒
961.
In this study, CO2 laser was used for treating cotton fabric to create surface effects which were found to vary with laser process parameters, i.e. resolution and pixel time. The resolutions used were 40, 50 and 60 dpi while the pixel time used were 100, 110 and 120 μs. Both physical and chemical properties at the surface of fabrics treated with different combinations of resolution and pixel time were analysed by the Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy with Attenuated Total Reflection mode (FTIR-ATR), and X-ray Photoelectron Spectroscopy (XPS). SEM investigation revealed the appearance of various numbers of pores, cracks and fragments present on the fibre surface after laser treatment. FTIR-ATR spectra showed that the laser-treated cotton fabric suffered changes in chemical structure with the hydroxyl (–OH) stretching group being oxidised to carbonyl/carboxyl groups. The XPS analysis revealed a change in surface elemental composition after laser treatment. Furthermore, the wicking property of the laser-treated cotton fabrics was evaluated.  相似文献   
962.
Spintronic devices are very important for futuristic information technology. Suitable materials for such devices should have half-metallic properties so that only one spin passes through the device. In particular, organic half metals have the advantage that they may be used for flexible devices and have a long spin-coherence length. We predict that the one-dimensional infinite chromium porphyrin array, which we call Cr-PA(∞), shows half-metallic behavior when the spins on the chromium atoms are in a parallel alignment. Since the chromium atoms are separated by a large distance (>8 ?), the coupling between spins is small and thus their directions can be readily controlled by an external magnetic field. In the ferromagnetic state, the band gap for major spin electrons is 0.30 eV, while there is no band gap for the minor spin electrons, thus reflecting the half-metallic property. This unique property originates from the high spin state of Cr which results in the spin asymmetry of the conduction band in Cr-PA(∞). Electron transport of Cr-PA(1,2,3) is calculated with the nonequilibrium Green function technique in the presence of Au electrodes. It turned out that the spin-filtering ability appears from the dimeric Cr-PA(2). Thus, a new organometallic framework for designing a spin filter is proposed. Though many others have designed novel spintronic devices, none of them are realized due to the lack of a practical fabrication method at present. However, the porphyrin-based spintronic device provides a synthesizable framework.  相似文献   
963.
Aberrant protein aggregation causes numerous neurological diseases including Creutzfeldt-Jakob disease (CJD), but the aggregation mechanisms remain poorly understood. Here, we report AFM results on the formation pathways of β-oligomers and nonfibrillar aggregates from wild-type full-length recombinant human prion protein (WT) and an insertion mutant (10OR) with five additional octapeptide repeats linked to familial CJD. Upon partial denaturing, seeds consisting of 3-4 monomers quickly appeared. Oligomers of ~11-22 monomers then formed through direct interaction of seeds, rather than by subsequent monomer attachment. All larger aggregates formed through association of these β-oligomers. Although both WT and 10OR exhibited identical aggregation mechanisms, the latter oligomerized faster due to lower solubility and, hence, thermodynamic stability. This novel aggregation pathway has implications for prion diseases as well as others caused by protein aggregation.  相似文献   
964.
Lantibiotics are antimicrobial peptides produced by bacteria. Some are employed for food preservation, whereas others have therapeutic potential due to their activity against organisms resistant to current antibiotics. They are ribosomally synthesized and posttranslationally modified by dehydration of serine and threonine residues followed by attack of thiols of cysteines to form monosulfide lanthionine and methyllanthionine rings, respectively. Chemical synthesis of peptide analogues is a powerful method to verify stereochemistry and access structure-activity relationships. However, solid supported synthesis of lantibiotics has been difficult due to problems in generating lanthionines and methyllanthionines with orthogonal protection and good stereochemical control. We report the solid-phase syntheses of both peptides of a two-component lantibiotic, lacticin 3147. Both successive and interlocking ring systems were synthesized on-resin, thereby providing a general methodology for this family of natural products.  相似文献   
965.
Skutterudites CoSb(3) with multiple cofillers Ba, La, and Yb were synthesized and very high thermoelectric figure of merit ZT = 1.7 at 850 K was realized. X-ray diffraction of the densified multiple-filled bulk samples reveals all samples are phase pure. High-resolution scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy (EDS) analysis confirm that multiple guest fillers occupy the nanoscale-cages in the skutterudites. The fillers are further shown to be uniformly distributed and the Co-Sb skutterudite framework is virtually unperturbed from atomic scale to a few micrometers. Our results firmly show that high power factors can be realized by adjusting the total filling fraction of fillers with different charge states to reach the optimum carrier density, at the same time, lattice thermal conductivity can also be significantly reduced, to values near the glass limit of these materials, through combining filler species of different rattling frequencies to achieve broad-frequency phonon scattering. Therefore, partially filled skutterudites with multiple fillers of different chemical nature render unique structural characteristics for optimizing electrical and thermal transports in a relatively independent way, leading to continually enhanced ZT values from single- to double-, and finally to multiple-filled skutterudites. The idea of combining multiple fillers with different charge states and rattling frequencies for performance optimization is also expected to be valid for other caged TE compounds.  相似文献   
966.
We demonstrate a high-resolution in situ experimental method for performing simultaneous size classification and characterization of functional gold nanoparticle clusters (GNCs) based on asymmetric-flow field flow fractionation (AFFF). Field emission scanning electron microscopy, atomic force microscopy, multi-angle light scattering (MALS), and in situ ultraviolet-visible optical spectroscopy provide complementary data and imagery confirming the cluster state (e.g., dimer, trimer, tetramer), packing structure, and purity of fractionated populations. An orthogonal analysis of GNC size distributions is obtained using electrospray-differential mobility analysis (ES-DMA). We find a linear correlation between the normalized MALS intensity (measured during AFFF elution) and the corresponding number concentration (measured by ES-DMA), establishing the capacity for AFFF to quantify the absolute number concentration of GNCs. The results and corresponding methodology summarized here provide the proof of concept for general applications involving the formation, isolation, and in situ analysis of both functional and adventitious nanoparticle clusters of finite size.  相似文献   
967.
Chemical exchange saturation transfer (CEST) is a new approach for generating magnetic resonance imaging (MRI) contrast that allows monitoring of protein properties in vivo. In this method, a radiofrequency pulse is used to saturate the magnetization of specific protons on a target molecule, which is then transferred to water protons via chemical exchange and detected using MRI. One advantage of CEST imaging is that the magnetizations of different protons can be specifically saturated at different resonance frequencies. This enables the detection of multiple targets simultaneously in living tissue. We present here a CEST MRI approach for detecting the activity of cytosine deaminase (CDase), an enzyme that catalyzes the deamination of cytosine to uracil. Our findings suggest that metabolism of two substrates of the enzyme, cytosine and 5-fluorocytosine (5FC), can be detected using saturation pulses targeted specifically to protons at +2 ppm and +2.4 ppm (with respect to water), respectively. Indeed, after deamination by recombinant CDase, the CEST contrast disappears. In addition, expression of the enzyme in three different cell lines exhibiting different expression levels of CDase shows good agreement with the CDase activity measured with CEST MRI. Consequently, CDase activity was imaged with high-resolution CEST MRI. These data demonstrate the ability to detect enzyme activity based on proton exchange. Consequently, CEST MRI has the potential to follow the kinetics of multiple enzymes in real time in living tissue.  相似文献   
968.
Chan Park S  Shinzawa H  Qian J  Chung H  Ozaki Y  Arnold MA 《The Analyst》2011,136(15):3121-3129
A novel strategy is demonstrated to improve the accuracy for determination of polyethylene (PE) density using Raman spectroscopy by optimizing the temperature of sample measurement. Spectral features associated with the conformation change of the polymer induced by temperature may provide valuable information to quantify important polymer properties such as density. To evaluate possible existence of an optimal temperature providing improved quantitative accuracy, Raman spectra of PE pellets with different densities were collected at eight different temperatures from 30 to 100 °C at 10 °C intervals. Using the spectral datasets collected at each temperature, partial least squares (PLS) models were developed using the reference PE density values determined by a standard density gradient method at 23 °C. Interestingly, the most accurate determination of density was realized at 70 °C. Multiple perturbation two-dimensional (MP2D) correlation analysis and differential scanning calorimetry (DSC) were used to examine the origin of improved accuracy at 70 °C. From these analyses, the pre-melt behavior of the PE samples was identified below their melting temperatures. Structural variations induced at the pre-melt stages enhance Raman spectral selectivity among the samples, thereby providing more accurate determination of PE density. The MP2D correlation analysis revealed the unforeseen thermal behavior of PE samples and successfully explained the improved accuracy at 70 °C.  相似文献   
969.
Pd-catalyzed asymmetric prenylation of oxindoles to afford selectively either the prenyl or reverse-prenyl product has been demonstrated. Control of the regioselectivity in this transformation is governed by the choice of ligand, solvent, and halide additive. The resulting prenylated and reverse-prenylated products were transformed into ent-flustramides and ent-flustramines A and B. Additionally, control of the regio- and diastereoselectivity was obtained using π-geranylpalladium complexes.  相似文献   
970.
The amyloid‐β (Aβ) aggregation pathway is an important target for the discovery of drugs that can prevent or delay the onset of Alzheimer’s disease (AD). The electrochemistry of Congo Red (CR) represents a particularly promising tool for screening of Aβ‐binding therapeutics in a rapid and cost‐effective format. The results of the differential pulse voltammetry (DPV) measurements were confirmed using simultaneous UV‐vis analysis of the same incubated Aβ samples. The early changes in the electrochemical signals were attributed to the interaction of the Aβ oligomers with CR. The electrochemical approach, in principle, allowed monitoring small molecule‐Aβ interactions on the time scale of aggregation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号