首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64097篇
  免费   11398篇
  国内免费   4462篇
化学   59613篇
晶体学   670篇
力学   1979篇
综合类   234篇
数学   5457篇
物理学   12004篇
  2024年   77篇
  2023年   471篇
  2022年   820篇
  2021年   1048篇
  2020年   2067篇
  2019年   3334篇
  2018年   1774篇
  2017年   1400篇
  2016年   4336篇
  2015年   4517篇
  2014年   4647篇
  2013年   5784篇
  2012年   5097篇
  2011年   4599篇
  2010年   4488篇
  2009年   4409篇
  2008年   4152篇
  2007年   3414篇
  2006年   2942篇
  2005年   2921篇
  2004年   2446篇
  2003年   2139篇
  2002年   2770篇
  2001年   2040篇
  2000年   1850篇
  1999年   936篇
  1998年   562篇
  1997年   495篇
  1996年   519篇
  1995年   426篇
  1994年   393篇
  1993年   377篇
  1992年   368篇
  1991年   307篇
  1990年   252篇
  1989年   220篇
  1988年   196篇
  1987年   151篇
  1986年   154篇
  1985年   173篇
  1984年   121篇
  1983年   87篇
  1982年   88篇
  1981年   66篇
  1980年   60篇
  1979年   64篇
  1978年   51篇
  1976年   50篇
  1974年   55篇
  1973年   56篇
排序方式: 共有10000条查询结果,搜索用时 13 毫秒
71.
A novel copolymer, poly(N‐hexyl‐3,7‐phenothiazylene‐1,2‐ethenylene‐2,6‐pyridylene‐1,2‐ethenylene) ( P3 ), containing N‐hexyl‐3,7‐phenothiazylene and 2,6‐pyridylene chromophores was synthesized to investigate the effect of protonation, metal complexation, and chemical oxidation on its absorption and photoluminescence (PL). Poly(N‐hexyl‐3,8‐iminodibenzyl‐1,2‐ethenylene‐1,3‐phenylene‐1,2‐ethenylene) and poly(N‐hexyl‐3,7‐phenothiazylene‐1,2‐ethenylene‐1,3‐phenylene‐1,2‐ethenylene) ( P2 ), consisting of 1,3‐divinylbenzene alternated with N‐hexyl‐3,8‐iminodibenzyl and N‐hexyl‐3,7‐phenothiazylene, respectively, were also prepared for comparison. Electrochemical investigations revealed that P3 exhibited lower band gaps (2.34 eV) due to alternating donor and acceptor conjugated units (push–pull structure). The absorption and PL spectral variations of P3 were easily manipulated by protonation, metal chelation, and chemical oxidation. P3 displayed significant bathochromic shifts when protonated with trifluoroacetic acid in chloroform. The complexation of P3 with Fe3+ led to a significant absorption change and fluorescence quenching, and this implied the coordination of ferric ions with the 2,6‐pyridylene groups in the backbone. Moreover, both phenothiazylene‐containing P2 and P3 showed conspicuous PL quenching with a slight redshift when oxidized with NOBF4. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1272–1284, 2004  相似文献   
72.
In this research, a simple, sensitive chemiluminescence (CL) method for the determination of humic acid (HA) in water samples was first developed based on the redox reaction between humic acid and cerium(IV) in the acidic condition. Different with the former redox CL reaction which occurred in alkaline solution, no enhancers were needed and neither precipitation nor a second contamination would occur in the present CL system. Comparing with other spectrometric methods, we find that the proposed analysis system had better applicability and accuracy. Under the optimal experiment conditions, the CL peak height was linear with the concentration of HA in the range of 0.03 to 10.0 microg mL(-1). The detection limit is 0.01 microg mL(-1) (S/N = 3), and the relative standard deviation was 2.3% for 0.5 microg mL(-1) HA solution with eleven repeated measurements. The present CL method was successfully applied to the determination of HA in tap water, spring water and river water samples with good recovery from 90.0 to 110.0%. A possible CL mechanism was proposed based on the results of UV and fluorescence spectrometry and the CL spectrum of HA. It was speculated that the semi-quinone radicals in the excited state were the emitters.  相似文献   
73.
The reversible addition–fragmentation chain transfer (RAFT) polymerization of acrylonitrile (AN) mediated by 2‐cyanoprop‐2‐yl dithiobenzoate was first applied to synthesize polyacrylonitrile (PAN) with a high molecular weight up to 32,800 and a polydispersity index as low as 1.29. The key to success was ascribed to the optimization of the experimental conditions to increase the fragmentation reaction efficiency of the intermediate radical. In accordance with the atom transfer radical polymerization of AN, ethylene carbonate was also a better solvent candidate for providing higher controlled/living RAFT polymerization behaviors than dimethylformamide and dimethyl sulfoxide. The various experimental parameters, including the temperature, the molar ratio of dithiobenzoate to the initiator, the molar ratio of the monomer to dithiobenzoate, the monomer concentration, and the addition of the comonomer, were varied to improve the control of the molecular weight and polydispersity index. The molecular weights of PANs were validated by gel permeation chromatography along with a universal calibration procedure and intrinsic viscosity measurements. 1H NMR analysis confirmed the high chain‐end functionality of the resultant polymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1272–1281, 2007  相似文献   
74.
This work reports a new synthetic approach for single‐phase TiO2 nanomaterials by solvothermal treatment of titanium tetrachloride in acetone at 80–110 °C. Small, uniform, and yet size‐tunable (5–10 nm) anatase titania nanocrystallites were obtained using a low concentration of TiCl4 in acetone (i.e., at molar ratios of TiCl4/acetone ≤ 1:15) in the temperature range of 80–110 °C, while rutile nanofibers were synthesized using a high concentration of TiCl4 (e.g., TiCl4/acetone = 1:10) at 110 °C. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
75.
76.
黄琳  王龙 《中国科学A辑》1991,34(8):839-847
本文运用值映射与参数化的方法研究了鲁棒D稳定性问题。文中给出了主要结果——参数空间鲁棒分析的边界定理,作为该结果的应用,一些现代鲁棒分析的知名结果,例如多项式族的稜边定理,Kharitonov定理和菱形定理都被简洁地证明出来;给出了一种判定双参数多项式族D稳定的新方法。用该方法可以方便地确定H稳定多项式按一定摄动模式(区间方式和菱形方形)的最大摄动界。  相似文献   
77.
Bipyridinophane–fluorene conjugated copolymers have been synthesized via Suzuki and Heck coupling reactions from 5,8‐dibromo‐2,11‐dithia[3]paracyclo[3](4,4′)‐2,2′‐bipyridinophane and suitable fluorene precursors. Poly[2,7‐(9,9‐dihexylfluorene)‐coalt‐5,8‐(2,11‐dithia[3]paracyclo[3](4,4′)‐2,2′‐bipyridinophane)] ( P7 ) exhibits large absorption and emission redshifts of 20 and 34 nm, respectively, with respect to its planar reference polymer Poly[2,7‐(9,9‐dihexylfluorene)‐co‐alt‐1,4‐(2,5‐dimethylbenzene)] ( P11 ), which bears the same polymer backbone as P7 . These spectral shifts originate from intramolecular aromatic C? H/π interactions, which are evidenced by ultraviolet–visible and 1H NMR spectra as well as X‐ray single‐crystal structural analysis. However, the effect of the intramolecular aromatic C? H/π interactions on the spectral shift in poly[9,9‐dihexylfluorene‐2,7‐yleneethynylene‐coalt‐5,8‐(2,11‐dithia[3]paracyclo[3](4,4′)‐2,2′‐bipyridinophane)] ( P10 ) is much weaker. Most interestingly, the quenching behaviors of these two conjugated polymers are largely dependent on the polymer backbone. For example, the fluorescence of P7 is efficiently quenched by Cu2+, Co2+, Ni2+, Zn2+, Mn2+, and Ag+ ions. In contrast, only Cu2+, Co2+, and Ni2+ ions can partially quench the fluorescence of P10 , but much less efficiently than the fluorescence of P7 . The static Stern–Volmer quenching constants of Cu2+, Co2+, and Ni2+ ions toward P7 are of the order of 106 M?1, being 1300, 2500, and 37,300 times larger than those of P10 , respectively. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4154–4164, 2006  相似文献   
78.
A system for display of magnetic resonance (MR) spectroscopic imaging (SI) data is described which provides for efficient review and analysis of the multidimensional spectroscopic and spatial data format of this technique. Features include the rapid display of spectra from selected image voxels, formation of spectroscopic images, spectral and image data processing operations, methods for correlating spectroscopic image data with high resolution 1H MR images, and hardcopy facilities. Examples are shown for 31P and 1H spectroscopic imaging studies obtained in human and rat brain.  相似文献   
79.
Low‐molecular‐weight poly(acrylic acid) (PAA) was synthesized by reversible addition fragmentation chain transfer polymerization with a trithiocarbonate as chain‐transfer agent (CTA). With a combination of NMR spectroscopy and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry, the PAA end‐groups of the polymer were analyzed before and after neutralization by sodium hydroxide. The polymer prior to neutralization is made up of the expected trithiocarbonate chain‐ends and of the H‐terminated chains issued from a reaction of transfer to solvent. After neutralization, the trithiocarbonates are transformed into thiols, disulfides, thiolactones, and additional H‐terminated chains. By quantifying the different end‐groups, it was possible to demonstrate that fragmentation is the rate limiting step in the transfer reaction. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5439–5462, 2004  相似文献   
80.
The dispersion behavior of agglomerates of several grades of fumed silica in poly(dimethyl siloxane) liquids has been studied as a function of particle morphology and applied flow conditions. The effects of primary particle size and aggregate density and structure on cohesivity were probed through tensile and shear strength tests on particle compacts. These cohesivity tests indicated that the shear strength of particle compacts was two orders of magnitude higher than the tensile strength at the same overall packing density. Experiments carried out in both steady and time‐varying simple‐shear flows indicate that dispersion occurs through tensile failure. In the steady‐shear experiments,enhanced dispersion was obtained at higher levels of applied stress and, at comparable levels of applied stress, dispersion was found to proceed faster at higher shear rates. Experiments conducted in time‐varying flows further corroborated the results obtained in tensile cohesivity tests. Experiments in which the mean and maximum stresses in the time‐varying flows were matched to the stresses produced in steady shear flows highlight the influence of flow dynamics on dispersion behavior.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号