首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   0篇
化学   48篇
力学   11篇
数学   28篇
物理学   24篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2016年   1篇
  2014年   1篇
  2013年   7篇
  2012年   5篇
  2011年   3篇
  2010年   1篇
  2009年   8篇
  2008年   4篇
  2007年   4篇
  2006年   6篇
  2005年   8篇
  2004年   1篇
  2003年   4篇
  2002年   3篇
  2001年   4篇
  1999年   4篇
  1998年   1篇
  1997年   2篇
  1996年   5篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   6篇
  1984年   4篇
  1983年   1篇
  1982年   1篇
  1980年   4篇
  1979年   1篇
  1972年   3篇
  1970年   1篇
排序方式: 共有111条查询结果,搜索用时 26 毫秒
91.
The aim of this paper is to study non-periodic masonries – typical of historical buildings – by means of a perturbation approach and to evaluate the effect of a random perturbation on the elastic response of a periodic masonry wall. The random masonry is obtained starting from a periodic running bond pattern. A random perturbation on the horizontal positions of the vertical interfaces between the blocks which form the masonry wall is introduced. In this way, the height of the blocks is uniform, while their width in the horizontal direction is random. The perturbation is limited such as each block has still exactly 6 neighboring blocks. In a first discrete model, the blocks are modeled as rigid bodies connected by elastic interfaces (mortar thin joints). In other words, masonry is seen as a “skeleton” in which the interactions between the rigid blocks are represented by forces and moments which depend on their relative displacements and rotations. A second continuous model is based on the homogenization of the discrete model. Explicit upper and lower bounds on the effective elastic moduli of the homogenized continuous model are obtained and compared to the well-known effective elastic moduli of the regular periodic masonry. It is found that the effective moduli are not very sensitive to the random perturbation (less than 10%). At the end, the Monte Carlo simulation method is used to compare the discrete random model and the continuous model at the structural level (a panel undergoing in plane actions). The randomness of the geometry requires the generation of several samples of size L of the discrete masonry. For a sample of size L, the structural discrete problem is solved using the same numerical procedure adopted in [Cecchi, A., Sab, K., 2004. A comparison between a 3D discrete model and two homogenized plate models for periodic elastic brickwork, International Journal of Solids Structures 41 (9–10), 2259–2276] and the average solution over the samples gives an estimation which depends on L. As L increases, an asymptotic limit is reached. One issue is to find the minimum size for L and to compare the asymptotic average solution to the one obtained from the continuous homogenized model.  相似文献   
92.
A simplified kinematic procedure at a cell level is proposed to obtain in-plane elastic moduli and macroscopic masonry strength domains in the case of herringbone masonry. The model is constituted by two central bricks interacting with their neighbors by means of either elastic or rigid-plastic interfaces with friction, representing mortar joints. The herringbone pattern is geometrically described and the internal law of composition of the periodic cell is defined.A sub-class of possible elementary deformations is a-priori chosen to describe joints cracking under in-plane loads. Suitable internal macroscopic actions are applied on the Representative Element of Volume (REV) and the power expended within the 3D bricks assemblage is equated to that expended in the macroscopic 2D Cauchy continuum. The elastic and limit analysis problem at a cell level are solved by means of a quadratic and linear programming approach, respectively.To assess elastic results, a standard FEM homogenization is also performed and a sensitivity analysis regarding two different orientations of the pattern, the thickness of the mortar joints and the ratio between block and mortar Young moduli is conducted. In this way, the reliability of the numerical model is critically evaluated under service loads.When dealing with the limit analysis approach, several computations are performed investigating the role played by (1) the direction of the load with respect to herringbone bond orientation, (2) masonry texture and (3) mechanical properties adopted for joints.At a structural level, a FE homogenized limit analysis is performed on a masonry dome built in herringbone bond. In order to assess limit analysis results, additional non-linear FE analyses are performed, including a full 3D numerical expensive heterogeneous approach and models where masonry is substituted with an equivalent macroscopic material with orthotropic behavior and possible softening. Reliable predictions of collapse loads and failure mechanisms are obtained, meaning that the approach proposed may be used by practitioners for a fast evaluation of the effectiveness of herringbone bond orientation.  相似文献   
93.
The complexing, solubilizing and amorphizing abilities toward oxaprozin (a poorly water-soluble anti-inflammatory agent) of some β-cyclodextrin derivatives (hydroxypropyl-βCd, heptakis-2,6-di-O-methyl-βCd (DIMEB) amorphous randomly substituted methyl-βCd (RAMEB) and semi-crystalline methyl-βCd (CRYSMEΒ)) were investigated and compared with those of natural (α-, β-, γ-) cyclodextrins. The role of both the cavity size, the amorphous or crystalline state and the presence and type of substituent on the ability of cyclodextrins in establishing effective interactions with the drug has been evaluated. Equimolar drug-cyclodextrin solid systems were prepared by blending, kneading, co-grinding, sealed-heating, coevaporation, and colyophilization. Drug-carrier interactions were studied in both the liquid and solid state by phase-solubility analysis, differential scanning calorimetry, X-ray powder diffractometry, FT-IR spectroscopy and scanning electron microscopy. βCd showed the best performance among the natural Cds, indicating that its cavity was the most suitable for accommodating the drug molecule. The presence of substituents on the rim of the βCd cavity significantly improved its complexing and solubilizing effectiveness towards the drug, and methylated derivatives were better than the hydroxy-propylated ones The amorphous nature of the partner was also important: among the examined methyl-derivatives, RAMEB proved to be the most effective in performing solid state interactions and in improving drug wettability and dissolution properties.  相似文献   
94.
The synthesis of pyrazolo[4,5-c][1]benzazepin-10-ones 10 and 13 and pyrazolo[4,3-c][1]benzazepin-10-ones 11 and 12 is reported. The structure of compounds 10-13 and that of their parent compounds 2-5 ensues from a 13C nmr study.  相似文献   
95.
A linear viscous model for evaluating the stresses and strains produced in masonry structures over time is presented. The model is based on rigorous homogenization procedures and the following two assumptions: that the structure is composed of either rigid or elastic blocks, and that the mortar is viscoelastic. The hypothesis of rigid block is particularly suitable for historical masonry, in which stone blocks may be assumed as rigid bodies, while the hypothesis of elastic blocks may be assumed for newly constructed brickwork structures. The hypothesis of viscoelastic mortar is based on the observation that non-linear phenomena may be concentrated in mortar joints. Under these assumptions, constitutive homogenized viscous functions are obtained in an analytical form.Some meaningful cases are discussed: masonry columns subject to minor and major eccentricity, and a masonry panel subject to both horizontal and vertical loads. The major eccentricity case is analysed taking into account both the effect of viscosity and the no-tension hypothesis, whereas the bi-dimensional loading case is analysed to verify the sensitivity of masonry behaviour to viscous function. In the masonry wall considered, the principal stresses are both of compression, and the no-tension assumption may therefore be discounted.  相似文献   
96.
Ethyl 3(5)-formylpyrazole-5(3)-carboxylate, 2-nitrobenzyl bromide or 2-nitrobenzoyl chloride are the starting basic materials to prepare with a few reaction steps, pyrazolo[5,1-c][1,4]benzodiazepines bearing at position 2 a substituted propionic chain ( 7–9 ) or bearing at position 5 a carbonyl group ( 12 ). Compounds 7–9, 12 are to be considered aza analogs of the antitumor antibiotic antramycin.  相似文献   
97.
A special recursive algorithm is built by a three-term recursive formula with coefficients evaluated by the moments method.A new functionalc(·) is studied over any function space that contains the polynomial space and it is shown that such a functional is positive definite, enabling us to use the advantages of such a property on the zeros of orthogonal polynomials for such a functional. A comparison is presented of the numerical advantages of such a method with respect to the Laguerre polynomials.  相似文献   
98.
99.
A homogenization procedure for finding the bending stiffness of a 2D regular lattice with random local interactions is proposed. The kinematic and static methods are used to provide explicit upper and lower bounds for the homogenized moduli. The proposed homogenization procedure is applied to a masonry obtained by a random perturbation of the periodic running bond masonry [Cecchi, A., Sab, K., 2009. Discrete and continuous models for in plane loaded random elastic brickwork. Eur. J. Mech. A 28, 610–625].A numerical evaluation of the scatter between the discrete models and the 2D Love–Kirchhoff model is performed on a test case, for various values of the random perturbation parameter and of the parameter that characterizes the heterogeneity of the wall. As expected, when the number of heterogeneities in the structure is large enough, the average response of the random discrete model converges to an asymptotic response. It is shown that this asymptotic response is very close to that of the periodic discrete model which is in turn very close to the response of the deterministic homogenized model. Similarly to the conclusion of Cecchi and Sab [Cecchi A., Sab K., 2009. Discrete and continuous models for in plane loaded random elastic brickwork. Eur. J. Mech. A. 28, 610–625.] dedicated to in-plane loading, the present results concerning out-of-plane loading show (both by means of a discrete model and a homogenized model) that the running bond pattern may be used successfully to analyze historical masonries with blocks having irregular widths in the horizontal direction.  相似文献   
100.
Two-wythes masonry walls arranged in English bond texture were often used in the past as bearing panels in seismic area. On the other hand, earthquake surveys have demonstrated that masonry strength under horizontal actions is usually insufficient, causing premature collapses of masonry buildings, often ascribed to out-of-plane actions. Furthermore, many codes of practice impose for new brickwork walls a minimal slenderness, which for instance is fixed by the Italian O.P.C.M. 3431 equal to 12 for artificial bricks and 10 for natural blocks masonry.For the above reasons, the analysis at failure of English bond brickwork walls under out-of-plane actions is a topic that deserves consideration, despite the fact that almost the totality of the studies of masonry at failure is devoted to running bond arrangements. Furthermore, it must be noted that an approach based on the analysis of running bond texture – in comparison with English bond pattern – is not suitable for the investigation of the behavior of bearing panels.In this framework, in the present paper, a Reissner–Mindlin kinematic limit analysis approach is presented for the derivation of the macroscopic failure surfaces of two-wythes masonry arranged in English bond texture. In particular, the behavior of a 3D system constituted by infinitely resistant bricks connected by joints reduced to interfaces with frictional behavior and limited tensile/compressive strength is identified with a 2D Reissner–Mindlin plate. In this way, assuming both an associated flow rule for the constituent materials and a finite subclass of possible deformation modes, an upper bound approximation of macroscopic English bond masonry failure surfaces is obtained as a function of macroscopic bending moments, torsion and shear forces.Several examples of technical relevance are treated both at a cell level and at a structural level, addressing the differences in terms of collapse loads and failure surfaces due to different textures and constituent laws for joints. Finally, two meaningful structural examples consisting of a panel in cylindrical flexion and a masonry slab constrained at three edges and out-of-plane loaded are discussed. A detailed comparison in terms of deformed shapes at collapse and failure loads between a 2D FE Reissner–Mindlin limit analysis approach and a full 3D heterogeneous FE model shows the reliability of the results obtained using the kinematic identification approach proposed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号