首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1114篇
  免费   56篇
  国内免费   5篇
化学   942篇
晶体学   5篇
力学   18篇
数学   104篇
物理学   106篇
  2024年   1篇
  2023年   15篇
  2022年   18篇
  2021年   22篇
  2020年   34篇
  2019年   24篇
  2018年   29篇
  2017年   11篇
  2016年   32篇
  2015年   42篇
  2014年   39篇
  2013年   61篇
  2012年   83篇
  2011年   111篇
  2010年   55篇
  2009年   38篇
  2008年   84篇
  2007年   76篇
  2006年   67篇
  2005年   53篇
  2004年   63篇
  2003年   45篇
  2002年   42篇
  2001年   15篇
  2000年   16篇
  1999年   5篇
  1998年   10篇
  1997年   7篇
  1996年   6篇
  1995年   14篇
  1994年   3篇
  1993年   7篇
  1992年   2篇
  1991年   4篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
  1985年   7篇
  1984年   4篇
  1983年   3篇
  1982年   2篇
  1981年   5篇
  1980年   3篇
  1979年   5篇
  1978年   4篇
  1977年   1篇
  1975年   2篇
  1962年   1篇
  1937年   1篇
排序方式: 共有1175条查询结果,搜索用时 0 毫秒
41.

A comprehensive survey of matrix effects on the LC–MS/MS analysis of the banned antibiotic growth promoters carbadox and olaquindox in feed was carried out. Various factors of sample preparation procedure and measurement were systematically investigated by pre- and post-extraction addition and postcolumn infusion experiments. In general, strong signal suppression up to 70 % for carbadox and up to 90 % for olaquindox was observed when using different extraction solvents and techniques as well as different chromatographic conditions. Reduction of matrix effects was achieved by SPE clean-up and dilution of sample extracts. Nevertheless, matrix effect profiles determined by postcolumn infusion revealed, that reduction of signal suppression at a respective retention time cannot guarantee improvement of the methods performance. If high variability of matrix effects is present along the chromatographic run, accuracy might decrease despite reduced signal suppression. Besides method parameters, different feedingstuffs were investigated and showed similar matrix effects.

  相似文献   
42.
Practical syntheses of 2‐keto‐3‐deoxy‐D ‐xylonate (D ‐KDX) and 2‐keto‐3‐deoxy‐L ‐arabinonate (L ‐KDA) that rely on reaction of the anion of ethyl 2‐[(tert‐butyldimethylsilyl)oxy]‐2‐(dimethoxy phosphoryl) acetate with enantiopure glyceraldehyde acetonide, followed by global deprotection of the resultant O‐silyl‐enol esters, have been developed. This has enabled us to confirm that a 2‐keto‐3‐deoxy‐D ‐gluconate aldolase from the archaeon Sulfolobus solfataricus demonstrates good activity for catalysis of the retro‐aldol cleavage of both these enantiomers to afford pyruvate and glycolaldehyde. The stereochemical promiscuity of this aldolase towards these enantiomeric aldol substrates confirms that this organism employs a metabolically promiscuous pathway to catabolise the C5‐sugars D ‐xylose and L ‐arabinose.  相似文献   
43.
44.
Pyrrolizidine alkaloids (PAs) are a large class of natural compounds amongst which the esterified 1,2-unsaturated necine base is toxic for humans and livestock. In the present study, a method was developed and validated for the screening and quantification of nine PAs and one PA N-oxide in teas (Camellia sinensis (L.) O. Kuntze) and herbal teas (camomile, fennel, linden, mint, rooibos, verbena). Samples were analysed by HPLC on a RP-column, packed with sub-2 μm core-shell particles, and quantified using tandem mass spectrometry operating in the positive electrospray ionisation mode. These PAs and some of their isomers were detected in a majority of the analysed beverages (50/70 samples). In 24 samples, PA concentrations were above the limit of quantification and the sum of the nine targeted PAs was between 0.021 and 0.954 μg per cup of tea. Thus, in some cases, total concentrations exceed the maximum daily intake recommended by the German Federal Institute for Risk Assessment and the UK’s Committee On Toxicity (i.e. 0.007 μg kg?1 bw). Graphical Abstract
?  相似文献   
45.
The natural compound ravenelin was isolated from the biomass extracts of Exserohilum rostratum fungus, and its antimicrobial, antiplasmodial, and trypanocidal activities were evaluated. Ravenelin was isolated by column chromatography and HPLC and identified by NMR and MS. The susceptibility of Gram-positive and Gram-negative bacteria strains to ravenelin was determined by microbroth dilution assay. Cytotoxicity was evaluated in hepatocarcinoma cells (HepG2) and BALB/c peritoneal macrophages by using MTT. SYBR Green I-based assay was used in the asexual stages of Plasmodium falciparum. Trypanocidal activity was tested against the epimastigote and intracellular amastigote forms of Trypanosoma cruzi. Ravenelin was active against Gram-positive bacteria strains, with emphasis on Bacillus subtilis (MIC value of 7.5 µM). Ravenelin’s antiparasitic activities were assessed against both the epimastigote (IC50 value of 5 ± 1 µM) and the intracellular amastigote forms of T. cruzi (IC50 value of 9 ± 2 µM), as well as against P. falciparum (IC50 value of 3.4 ± 0.4 µM). Ravenelin showed low cytotoxic effects on both HepG2 (CC50 > 50 µM) and peritoneal macrophage (CC50 = 185 ± 1 µM) cells with attractive selectivity for the parasites (SI values > 15). These findings indicate that ravenelin is a natural compound with both antibacterial and antiparasitic activities, and considerable selectivity indexes. Therefore, ravenelin is an attractive candidate for hit-to-lead development.  相似文献   
46.
Proviral integration site for Moloney murine leukemia virus (Pim)-1/2 kinase overexpression has been identified in a variety of hematologic (e.g., multiple myeloma or acute myeloid leukemia (AML)) and solid (e.g., colorectal carcinoma) tumors, playing a key role in cancer progression, metastasis, and drug resistance, and is linked to poor prognosis. These kinases are thus considered interesting targets in oncology. We report herein the design, synthesis, structure–activity relationships (SAR) and in vitro evaluations of new quinoxaline derivatives, acting as dual Pim1/2 inhibitors. Two lead compounds (5c and 5e) were then identified, as potent submicromolar Pim-1 and Pim-2 inhibitors. These molecules were also able to inhibit the growth of the two human cell lines, MV4-11 (AML) and HCT-116 (colorectal carcinoma), expressing high endogenous levels of Pim-1/2 kinases.  相似文献   
47.
48.
Hierarchically porous ZSM‐5 was achieved by using a simple bottom‐up strategy combining zeolite seeds with imidazolium‐based ionic liquids. The bimodal ZSM‐5 with hexagonal arranged mesopores (3 nm) shows important activity in the acid catalysis of bulky compounds relative to conventional ZSM‐5.  相似文献   
49.
Terminal alkyne coupling reactions promoted by rhodium(I) complexes of macrocyclic NHC-based pincer ligands—which feature dodecamethylene, tetradecamethylene or hexadecamethylene wingtip linkers viz. [Rh(CNC-n)(C2H4)][BArF4] (n=12, 14, 16; ArF=3,5-(CF3)2C6H3)—have been investigated, using the bulky alkynes HC≡CtBu and HC≡CAr’ (Ar’=3,5-tBu2C6H3) as substrates. These stoichiometric reactions proceed with formation of rhodium(III) alkynyl alkenyl derivatives and produce rhodium(I) complexes of conjugated 1,3-enynes by C−C bond reductive elimination through the annulus of the ancillary ligand. The intermediates are formed with orthogonal regioselectivity, with E-alkenyl complexes derived from HC≡CtBu and gem-alkenyl complexes derived from HC≡CAr’, and the reductive elimination step is appreciably affected by the ring size of the macrocycle. For the homocoupling of HC≡CtBu, E-tBuC≡CCH=CHtBu is produced via direct reductive elimination from the corresponding rhodium(III) alkynyl E-alkenyl derivatives with increasing efficacy as the ring is expanded. In contrast, direct reductive elimination of Ar'C≡CC(=CH2)Ar’ is encumbered relative to head-to-head coupling of HC≡CAr’ and it is only with the largest macrocyclic ligand studied that the two processes are competitive. These results showcase how macrocyclic ligands can be used to interrogate the mechanism and tune the outcome of terminal alkyne coupling reactions, and are discussed with reference to catalytic reactions mediated by the acyclic homologue [Rh(CNC-Me)(C2H4)][BArF4] and solvent effects.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号