首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2792篇
  免费   60篇
  国内免费   51篇
化学   1953篇
晶体学   15篇
力学   56篇
数学   507篇
物理学   372篇
  2021年   21篇
  2017年   17篇
  2016年   50篇
  2015年   29篇
  2014年   57篇
  2013年   110篇
  2012年   97篇
  2011年   135篇
  2010年   58篇
  2009年   46篇
  2008年   108篇
  2007年   119篇
  2006年   80篇
  2005年   104篇
  2004年   87篇
  2003年   67篇
  2002年   56篇
  2001年   21篇
  2000年   25篇
  1999年   22篇
  1998年   23篇
  1997年   31篇
  1996年   30篇
  1995年   29篇
  1994年   28篇
  1992年   26篇
  1991年   35篇
  1990年   25篇
  1989年   21篇
  1988年   38篇
  1987年   48篇
  1986年   36篇
  1985年   47篇
  1984年   49篇
  1983年   35篇
  1982年   39篇
  1981年   44篇
  1980年   37篇
  1979年   39篇
  1978年   70篇
  1977年   52篇
  1976年   53篇
  1975年   24篇
  1974年   41篇
  1973年   38篇
  1972年   22篇
  1969年   17篇
  1968年   16篇
  1885年   23篇
  1884年   26篇
排序方式: 共有2903条查询结果,搜索用时 15 毫秒
991.
Reaction of N-heterocyclic carbenes (NHCs) with isocyanates yields stable zwitterionic imidates/amidates in toluene solution. These compounds were fully characterized and the crystal structures of several species were determined by X-ray crystallography. The thermochemistry of binding of these and related species was studied by solution calorimetry. Comparison is made of the enthalpies of binding of NHC to isocyanates (RNCO) and isomeric nitrile oxides (RCNO) as well as CO2. DFT calculations were performed to additionally assess the nature of bonding in these compounds.  相似文献   
992.
The accuracy of numerical weather model predictions of the intensity and track of tropical storms may be significantly improved by large spatial coverage and frequent sampling of sea surface barometry. The availability of a radar operating at moderate-to-strong O2 absorption bands in the frequency range 50∼56 GHz to remotely measure surface barometric pressure may provide such capability. At these frequencies, the strength of radar echoes from water surfaces has a strong gradient with frequencies owing to the absorption of atmospheric O2. Our recent research has developed a technique based on the use of a dual-frequency, O2-band radar to estimate surface barometric pressure from the measured attenuation due to O2. The ratio of reflected radar signals at multiple wavelengths is used to minimize the effect of microwave absorption by liquid water and water vapor in the atmosphere, and the influences of sea surface reflection over the frequency of operation. A demonstration instrument has been developed to verify the differential O2 absorption measurement approach. Recent test flights to evaluate the in-flight performance of the demonstration instrument have been completed. The measured radar return and differential O2 absorption show good agreement with the modeled results. These flight test results are consistent with our instrumentation goal of ±5 mb uncertainty and indicate that our proposed differential absorption measurement approach may provide a useful measurement of sea surface pressure. Future test flights will provide higher altitude data and assess the precision of the sea surface pressure measurement for the existing demonstration radar.  相似文献   
993.
The signaling state of the photoactive yellow protein (PYP) photoreceptor is transiently developed via isomerization of its blue-light-absorbing chromophore. The associated structural rearrangements have large amplitude but, due to its transient nature and chemical exchange reactions that complicate NMR detection, its accurate three-dimensional structure in solution has been elusive. Here we report on direct structural observation of the transient signaling state by combining double electron electron resonance spectroscopy (DEER), NMR, and time-resolved pump-probe X-ray solution scattering (TR-SAXS/WAXS). Measurement of distance distributions for doubly spin-labeled photoreceptor constructs using DEER spectroscopy suggests that the signaling state is well ordered and shows that interspin-label distances change reversibly up to 19 ? upon illumination. The SAXS/WAXS difference signal for the signaling state relative to the ground state indicates the transient formation of an ordered and rearranged conformation, which has an increased radius of gyration, an increased maximum dimension, and a reduced excluded volume. Dynamical annealing calculations using the DEER derived long-range distance restraints in combination with short-range distance information from (1)H-(15)N HSQC perturbation spectroscopy give strong indication for a rearrangement that places part of the N-terminal domain in contact with the exposed chromophore binding cleft while the terminal residues extend away from the core. Time-resolved global structural information from pump-probe TR-SAXS/WAXS data supports this conformation and allows subsequent structural refinement that includes the combined energy terms from DEER, NMR, and SAXS/WAXS together. The resulting ensemble simultaneously satisfies all restraints, and the inclusion of TR-SAXS/WAXS effectively reduces the uncertainty arising from the possible spin-label orientations. The observations are essentially compatible with reduced folding of the I(2)' state (also referred to as the 'pB' state) that is widely reported, but indicates it to be relatively ordered and rearranged. Furthermore, there is direct evidence for the repositioning of the N-terminal region in the I(2)' state, which is structurally modeled by dynamical annealing and refinement calculations.  相似文献   
994.
The RHO gene encodes the G‐protein‐coupled receptor (GPCR) rhodopsin. Numerous mutations associated with impaired visual cycle have been reported; the G90D mutation leads to a constitutively active mutant form of rhodopsin that causes CSNB disease. We report on the structural investigation of the retinal configuration and conformation in the binding pocket in the dark and light‐activated state by solution and MAS‐NMR spectroscopy. We found two long‐lived dark states for the G90D mutant with the 11‐cis retinal bound as Schiff base in both populations. The second minor population in the dark state is attributed to a slight shift in conformation of the covalently bound 11‐cis retinal caused by the mutation‐induced distortion on the salt bridge formation in the binding pocket. Time‐resolved UV/Vis spectroscopy was used to monitor the functional dynamics of the G90D mutant rhodopsin for all relevant time scales of the photocycle. The G90D mutant retains its conformational heterogeneity during the photocycle.  相似文献   
995.
We describe a diagnostic ion that enables rapid semiquantitative evaluation of the degree of oxygen contamination in the collision gases used in tandem mass spectrometers. Upon collision-induced dissociation (CID), the m/z 359 positive ion generated from the analgesic etoricoxib undergoes a facile loss of a methyl sulfone radical [?SO2(CH3); 79-Da] to produce a distonic radical cation of m/z 280. The product-ion spectrum of this m/z 280 ion, recorded under low-energy activation on tandem-in-space QqQ or QqTof mass spectrometers using nitrogen from a generator as the collision gas, or tandem-in-time ion-trap (LCQ, LTQ) mass spectrometers using purified helium as the buffer gas, showed two unexpected peaks at m/z 312 and 295. This enigmatic m/z 312 ion, which bears a mass-to-charge ratio higher than that of the precursor ion, represented an addition of molecular oxygen (O2) to the precursor ion. The exceptional affinity of the m/z 280 radical cation towards oxygen was deployed to develop a method to determine the oxygen content in collision gases. Figure
?  相似文献   
996.
Upon collisional activation, gaseous metal adducts of lithium, sodium and potassium oxalate salts undergo an expulsion of CO2, followed by an ejection of CO to generate a product ion that retains all three metals atoms of the precursor. Spectra recorded even at very low collision energies (2 eV) showed peaks for a 44‐Da neutral fragment loss. Density functional theory calculations predicted that the ejection of CO2 requires less energy than an expulsion of a Na+ and that the [Na3CO2]+ product ion formed in this way bears a planar geometry. Furthermore, spectra of [Na3C2O4]+ and [39K3C2O4]+ recorded at higher collision energies showed additional peaks at m/z 90 and m/z 122 for the radical cations [Na2CO2]+? and [K2CO2]+?, respectively, which represented a loss of an M? from the precursor ions. Moreover, [Na3CO2]+, [39K3CO2]+ and [Li3CO2]+ ions also undergo a CO loss to form [M3O]+. Furthermore, product‐ion spectra for [Na3C2O4]+ and [39K3C2O4]+ recorded at low collision energies showed an unexpected peak at m/z 63 for [Na2OH]+ and m/z 95 for [39K2OH]+, respectively. An additional peak observed at m/z 65 for [Na218OH] + in the spectrum recorded for [Na3C2O4]+, after the addition of some H218O to the collision gas, confirmed that the [Na2OH] + ion is formed by an ion–molecule reaction with residual water in the collision cell. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
997.
998.
The first transition‐metal complex‐based two‐photon absorbing luminescence lifetime probes for cellular DNA are presented. This allows cell imaging of DNA free from endogenous fluorophores and potentially facilitates deep tissue imaging. In this initial study, ruthenium(II) luminophores are used as phosphorescent lifetime imaging microscopy (PLIM) probes for nuclear DNA in both live and fixed cells. The DNA‐bound probes display characteristic emission lifetimes of more than 160 ns, while shorter‐lived cytoplasmic emission is also observed. These timescales are orders of magnitude longer than conventional FLIM, leading to previously unattainable levels of sensitivity, and autofluorescence‐free imaging.  相似文献   
999.
We use a variant of the focal point analysis to refine estimates of the relative energies of the four low‐energy torsional conformers of glycolaldehyde. The most stable form is the cis‐cis structure which enjoys a degree of H‐bonding from hydroxyl H to carbonyl O; here dihedral angles τ1 (O?C? C? O) and τ2 (C? C? O? H) both are zero. We optimized structures in both CCSD(T)/aug‐cc‐pVDZ and aug‐cc‐pVTZ; the structures agree within 0.01 Å for bond lengths and 1.0 degrees for valence angles, but the larger basis brings the rotational constants closer to experimental values. According to our extrapolation of CCSD(T) energies evaluated in basis sets ranging to aug‐cc‐pVQZ the trans‐trans form (180°, 180°) has a relative energy of 12.6 kJ/mol. The trans‐gauche conformer (160°, ±75°) is situated at 13.9 kJ/mol and the cis‐trans form (0°, 180°) at 18.9 kJ/mol. Values are corrected for zero point vibrational energy by MP2/aug‐cc‐pVTZ frequencies. Modeling the vibrational spectra is best accomplished by MP2/aug‐cc‐pVTZ with anharmonic corrections. We compute the Watsonian parameters that define the theoretical vibrational‐rotational spectra for the four stable conformers, to assist the search for these species in the interstellar medium. Six transition states are located by G4 and CBS‐QB3 methods as well as extrapolation using energies for structures optimized in CCSD(T)/aug‐cc‐pVDZ structures. We use two isodesmic reactions with two well‐established thermochemical computational schemes G4 and CBS‐QB3 to estimate energy enthalpy and Gibbs energy of formation as well as the entropy of the gas phase system. Our extrapolated electronic energies of species appearing in the isodesmic reactions produce independent values of thermodynamic quantities consistent with G4 and CBS‐QB3. © 2013 Wiley Periodicals, Inc.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号