首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   468篇
  免费   18篇
  国内免费   1篇
化学   278篇
晶体学   2篇
力学   1篇
数学   61篇
物理学   145篇
  2022年   5篇
  2021年   10篇
  2020年   5篇
  2019年   7篇
  2018年   5篇
  2017年   9篇
  2016年   10篇
  2015年   10篇
  2014年   13篇
  2013年   32篇
  2012年   26篇
  2011年   30篇
  2010年   26篇
  2009年   19篇
  2008年   20篇
  2007年   34篇
  2006年   28篇
  2005年   31篇
  2004年   25篇
  2003年   14篇
  2002年   18篇
  2001年   8篇
  2000年   16篇
  1999年   11篇
  1998年   6篇
  1997年   7篇
  1996年   2篇
  1995年   9篇
  1994年   3篇
  1993年   9篇
  1992年   2篇
  1991年   6篇
  1990年   4篇
  1989年   3篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1983年   3篇
  1981年   1篇
  1979年   1篇
  1978年   3篇
  1976年   3篇
  1975年   1篇
  1973年   2篇
  1934年   2篇
  1933年   2篇
排序方式: 共有487条查询结果,搜索用时 15 毫秒
111.
112.
We show abstract versions for Banach couples of several limiting compact interpolation theorems established by Edmunds and Opic for couples of spaces.  相似文献   
113.
The formation of redox‐active, totally organic nanoparticles in water is achieved following a strategy similar to that used to form metal nanoparticles. It is based on two fundamental concepts: i) complexation through aromatic–aromatic interactions of a water‐soluble precursor aromatic molecule with polyelectrolytes bearing complementary charged aromatic rings, and ii) reduction of the precursor molecule to achieve stabilized nanoparticles. Thus, formazan nanoparticles are synthesized by reduction of a tetrazolium salt with ascorbic acid using polyelectrolytes bearing benzene sulfonate residues of high linear aromatic density, but cannot be formed in the presence of nonaromatic polyelectrolytes. The red colored nanoparticles are efficiently encapsulated in calcium alginate beads, showing macroscopic homogeneity. Bleaching kinetics with chlorine show linear rates on the order of tenths of milli­meters per minute. A linear behavior of the dependence of the rate of bleaching on the chlorine concentration is found, showing the potential of the nanoparticles for chlorine sensing.

  相似文献   

114.
Recent experimental studies on the Watson–Crick type base pairing of triazine and aminopyrimidine derivatives suggest that acid/base properties of the constituent bases might be related to the duplex stabilities measured in solution. Herein we use high‐level quantum chemical calculations and molecular dynamics simulations to evaluate the base pairing and stacking interactions of seven selected base pairs, which are common in that they are stabilized by two N? H???O hydrogen bonds separated by one N? H???N hydrogen bond. We show that neither the base pairing nor the base stacking interaction energies correlate with the reported pKa data of the bases and the melting points of the duplexes. This suggests that the experimentally observed correlation between the melting point data of the duplexes and the pKa values of the constituent bases is not rooted in the intrinsic base pairing and stacking properties. The physical chemistry origin of the observed experimental correlation thus remains unexplained and requires further investigations. In addition, since our calculations are carried out with extrapolation to the complete basis set of atomic orbitals and with inclusion of higher electron correlation effects, they provide reference data for stacking and base pairing energies of non‐natural bases.  相似文献   
115.
This work reports the advantages of carbon paste electrodes modified with electrogenerated magnetite nanoparticles. The nanoparticles present catalytic activity towards hydrogen peroxide reduction. The incorporation of glucose oxidase (GOx) and magnetite in a carbon paste matrix have made possible the development of an efficient glucose biosensor. The effect of the amount of GOx and magnetite present in the composite on the response of the biosensor was critically evaluated. The biosensors demonstrated to be highly selective, with negligible interference of ascorbic acid and uric acid. The proposed biosensor was challenged with human blood serum demonstrating an excellent correlation with the spectrophotometric method.  相似文献   
116.
The formation of a self-assembled monolayer (SAM) of 4-aminothiophenol (4-ATP) on polycrystalline platinum electrodes has been characterized by surface analysis and electrochemistry techniques. The 4-ATP monolayer was characterized by cyclic voltammetry (CV), linear sweep voltammetry, Raman spectroscopy, reflection-absorption infrared (RAIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). CV was used to study the dependence of the adsorption time and 4-ATP solution concentration on the relative degree of coverage of 4-ATP monolayers on polycrystalline Pt electrodes. The adsorption time range probed was 24-72 h. The optimal concentration of 4-ATP needed to obtain the highest surface at the lowest adsorption time was 10 mM. RAIR and Raman spectroscopy for 4-ATP-modified platinum electrodes showed the characteristic adsorption bands for 4-ATP, such as nuNH, nuCH(arom), and nuCS(arom), indicating the adsorption on the platinum surface. The XPS spectra for the modified Pt surface presented the binding energy peaks of sulfur and nitrogen. High energy resolution XPS studies, RAIR, and Raman spectrum for platinum electrodes modified with 4-ATP indicate that the molecules are sulfur-bonded to the platinum surface. The formation of a S-Pt bond suggests that ATP adsorption leads to an amino-terminated electrode surface. The thickness of the monolayer was evaluated via angle-resolved XPS (AR-XPS) analyses, giving a value of 8 A. As evidence of the terminal amino group on the electrode surface, the chemical derivatization of the 4-ATP SAM was done with 16-Br hexadecanoic acid. This surface reaction was followed by RAIR spectroscopy.  相似文献   
117.
The topography of platinum electrodes produced by electrodeposition (19 to 200 mC cm-2) on highly oriented pyrolytic graphite (HOPG) under different potential modulations was investigated by atomic force microscopy, scanning tunneling microscopy, and H-atom electrosorption voltammetry. To modulate electrodeposition, (i) triangular potential cycling at 0.1 V s-1, (ii) a linear cathodic potential at 0.1 V s-1 and anodic potential step cycling, and (iii) square wave potential cycling at 5000 Hz were utilized. AFM and STM imaging showed that at lower platinum loading the HOPG surface was partially covered by a 3D sublayer of platinum. Electrodes produced by procedure (i) were made of faceted platinum aggregates of about 200 nm and nanoclusters in the range of 5-20 nm; those that resulted from procedure (ii) consisted of anisotropic aggregates of nanoclusters arranged as quasi-parallel domains. These electrodes from (i) and (ii) behaved as fractal objects. The electrodes resulting from procedure (iii) exhibited a flat surface that behaved as a Euclidean object. For all WEs, as the platinum loading was increased the HOPG surface was fully covered by a thin 3D layer of platinum aggregates produced by electrodeposition and coalescence phenomena. Large platinum loading led to electrodes with fractal geometry. Statistical parameters (root-mean-square height, skewedness, kurtosis, anisotropy, Abbot curve, number of protrusions and valleys, and fractal dimension) were obtained from the analysis of AFM and STM imaging data. Platinum electrodeposition coupled to either H-adatom formation for procedures (i) and (ii) or phonon dispersion for (iii) was involved in the surface atom rearrangements related to electrofaceting. The H-adatom electrosorption voltammetry data were used to evaluate the real electrode surface area via the voltammetric charge and to advance a tentative explanation of the contribution of the different crystallographic facets to the global electrochemical process dominated by weak H-Pt adsorption interactions.  相似文献   
118.
The effect of 1-decanol on the potentiometric response of three ion-selective electrodes to large cationic species is analyzed. The electrodes were constructed with plasticized PVC membranes. The results suggest that 1-decanol alters the ionic transport through the membrane/water interface to an extent that depends on the strength of the active ion pair. The water solubility of the cation, its molecular weight, and the size of the ion pair seem to be relevant factors in this type of behavior. The potentiometric selectivity coefficients are also dependent on the presence of 1-decanol in the membrane. These results are similar to those already described in ion-selective electrodes with membranes capable of sensing anionic benzene sulfonate-type systems. Thus, the effect of the alcohol appears to be general by affecting mainly the membrane surface polarity.  相似文献   
119.
An HPLC method was developed to determine the stability of alprazolam (AL) as a pure drug and in monodrug pharmaceutical tablets. The main degradation product of AL tablets was isolated and fully characterized as triazolaminoquinoleine (TAQ). For a quantitative evaluation of the excipient effects in the pharmaceutical formulations, a 2k fractionated factorial design was applied in the preparation of the different samples. The kinetic of degradation of AL in each formulation was followed by UV spectrophotometry. It was found that excipients like CMC and magnesium stearate favour degradation, while the rate of the reaction is decreased when lactose and starch were used as excipients. A mechanism for the interactions of AL with some excipients is postulated that explains the observed results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
120.
Representative organoborane mixtures were quantitatively converted to their borohydrides through their reaction with activated KH (KH), permitting their detailed analysis by (11)B NMR. Through the treatment of commercial KH with a THF solution of lithium aluminum hydride (LAH), a dramatic change in the surface morphology results as revealed by scanning electron microscopy (SEM). Energy dispersed spectroscopy (EDS) was employed to reveal that the LAH treatment deposits a significant amount of an unknown aluminum-containing species on the surface of the KH, which imparts a unique reactivity to the KH. Even highly hindered organoboranes are quantitatively converted to their borohydrides by replacing electronegative groups (e.g., OR, halogen) with hydrogen, retaining only the carbon ligation. Through this simple KH treatment, complex organoborane reaction mixtures are converted to the corresponding borohydrides whose (11)B NMR spectra normally exhibit resolved signals for the individual species present. The integration of these signals provides quantitative information on the relative amounts of each component of the mixture. New generalities for the effect of alpha-, beta-, and gamma-substituents have also been determined that provide a new, simple technique for the determination of the isomeric distribution in organoborane mixtures resulting from common organoborane processes (e.g., hydroboration). Moreover, the (1)H-coupled (11)B NMR spectra of these mixtures reveal the extent of alkylation for each species present. Representative organoboranes were examined by this new technique permitting a simple and convenient quantitative analysis of the regio- and diastereomeric composition of a variety of asymmetric organoborane processes. Previously unknown details of pinene-based hydroborations and reductions are revealed for the first time employing the KH (11)B NMR technique.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号