首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   0篇
化学   13篇
力学   1篇
数学   7篇
物理学   27篇
  2022年   1篇
  2017年   1篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   5篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1976年   1篇
  1973年   1篇
  1939年   2篇
  1935年   2篇
排序方式: 共有48条查询结果,搜索用时 15 毫秒
31.
32.
Global air quality and climate   总被引:1,自引:0,他引:1  
Emissions of air pollutants and their precursors determine regional air quality and can alter climate. Climate change can perturb the long-range transport, chemical processing, and local meteorology that influence air pollution. We review the implications of projected changes in methane (CH(4)), ozone precursors (O(3)), and aerosols for climate (expressed in terms of the radiative forcing metric or changes in global surface temperature) and hemispheric-to-continental scale air quality. Reducing the O(3) precursor CH(4) would slow near-term warming by decreasing both CH(4) and tropospheric O(3). Uncertainty remains as to the net climate forcing from anthropogenic nitrogen oxide (NO(x)) emissions, which increase tropospheric O(3) (warming) but also increase aerosols and decrease CH(4) (both cooling). Anthropogenic emissions of carbon monoxide (CO) and non-CH(4) volatile organic compounds (NMVOC) warm by increasing both O(3) and CH(4). Radiative impacts from secondary organic aerosols (SOA) are poorly understood. Black carbon emission controls, by reducing the absorption of sunlight in the atmosphere and on snow and ice, have the potential to slow near-term warming, but uncertainties in coincident emissions of reflective (cooling) aerosols and poorly constrained cloud indirect effects confound robust estimates of net climate impacts. Reducing sulfate and nitrate aerosols would improve air quality and lessen interference with the hydrologic cycle, but lead to warming. A holistic and balanced view is thus needed to assess how air pollution controls influence climate; a first step towards this goal involves estimating net climate impacts from individual emission sectors. Modeling and observational analyses suggest a warming climate degrades air quality (increasing surface O(3) and particulate matter) in many populated regions, including during pollution episodes. Prior Intergovernmental Panel on Climate Change (IPCC) scenarios (SRES) allowed unconstrained growth, whereas the Representative Concentration Pathway (RCP) scenarios assume uniformly an aggressive reduction, of air pollutant emissions. New estimates from the current generation of chemistry-climate models with RCP emissions thus project improved air quality over the next century relative to those using the IPCC SRES scenarios. These two sets of projections likely bracket possible futures. We find that uncertainty in emission-driven changes in air quality is generally greater than uncertainty in climate-driven changes. Confidence in air quality projections is limited by the reliability of anthropogenic emission trajectories and the uncertainties in regional climate responses, feedbacks with the terrestrial biosphere, and oxidation pathways affecting O(3) and SOA.  相似文献   
33.
In this paper we present the concept of a robotic instrument for in situ luminescence dating of near-surface sediments on Mars. The scientific objectives and advantages to be gained from the development of such an instrument are described, and the challenges presented by the Mars surface environment to the design and operation of the instrument are outlined.  相似文献   
34.
Lu Z  Prather DW 《Optics letters》2004,29(15):1748-1750
We present a method for parallel coupling from a single-mode fiber, or fiber ribbon, into a silicon-on-insulator waveguide for integration with silicon optoelectronic circuits. The coupler incorporates the advantages of the vertically tapered waveguides and prism couplers, yet offers the flexibility of planar integration. The coupler can be fabricated by use of either wafer polishing technology or gray-scale photolithography. When optimal coupling is achieved in our experimental setup, the coupler can be packaged by epoxy bonding to form a fiber-waveguide parallel coupler or connector. Two-dimensional electromagnetic calculation predicts a coupling efficiency of 77% (- 1.14-dB insertion loss) for a silicon-to-silicon coupler with a uniform tunnel layer. The coupling efficiency is experimentally achieved to be 46% (-3.4-dB insertion loss), excluding the loss in silicon and the reflections from the input surface and the output facet.  相似文献   
35.
We present and experimentally validate self-collimation in planar photonic crystals as a new means of achieving structureless confinement of light in optical devices. We demonstrate the ability to arbitrarily route light by exploiting the dispersive characteristics of the photonic crystal. Propagation loss as low as 2.17 dB/mm is observed, and proposed applications of these devices are presented.  相似文献   
36.
A series of mixed, bifunctional metal-organic frameworks were synthesized and subsequent postsynthetic modification was demonstrated on the two, orthogonal functional sites. The use of differentially 'tagged' ligands combined with postsynthetic modification provides a facile route to a large number of functionally diverse materials.  相似文献   
37.
We previously reported that translocation of mitochondria from the oocyte cortex to the perinuclear area indicates positive developmental potential that was reduced in porcine somatic cell nuclear transfer (SCNT) embryos compared to in vitro220.). The present study is focused on distribution of donor cell mitochondria in intraspecies (pig oocytes; pig fetal fibroblast cells) and interspecies (pig oocytes; mouse fibroblast cells) reconstructed embryos by using either pig fibroblasts with mitochondria-stained MitoTracker CMXRos or YFP-mitochondria 3T3 cells (pPhi-Yellow-mito) as donor cells. Transmission electron microscopy was employed for ultrastructural analysis of pig oocyte and donor cell mitochondria. Our results revealed donor cell mitochondrial clusters around the donor nucleus that gradually dispersed into the ooplasm at 3 h after SCNT. Donor-derived mitochondria distributed into daughter blastomeres equally (82.8%) or unequally (17.2%) at first cleavage. Mitochondrial morphology was clearly different between donor cells and oocytes in which various complex shapes and configurations were seen. These data indicate that (1) unequal donor cell mitochondria distribution is observed in 17.2% of embryos, which may negatively influence development; and (2) complex mitochondrial morphologies are observed in IVF and SCNT embryos, which may influence mitochondrial translocation and affect development.  相似文献   
38.
We report on the design, optimization and characterization of silicon nanocrystal microgear resonators. We present three-dimensional finite-difference time-domain simulations to optimize the gear geometry and guide our experimental study. We fabricated a series of microgears with varying geometry and compared their photoluminescence spectra to that of a reference microdisk. The microgears exhibited a single dominant mode in the photoluminescence spectrum with quality factors as high as 103. We further demonstrated the ability to tune the wavelength of the dominant mode by changing the number of gear teeth and thereby selecting a mode with a different azimuthal order.  相似文献   
39.
40.
A rigorous electromagnetic algorithm is presented for the analysis of electrically large diffractive optical elements (DOE's), i.e., those that contain small features and have large apertures compared with the wavelength of illumination. The technique uses a finite-sized analysis window within which a rigorous electromagnetic technique is used to solve the local boundary-value problem. To this end the boundary-element and finite-difference time-domain methods are used. The analysis window is translated over the entire surface of the DOE and stitches together the complete solution. We validate the techniques by comparing the stitched boundary fields with those of a complete analysis, in both magnitude and phase, for a binary lens. To illustrate the utility of our method we analyzed an eight-level diffractive lens with a 10, 000-wavelength diameter sampled at 0.05 wavelength that required 8 Mbytes of memory on a desktop personal computer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号