排序方式: 共有44条查询结果,搜索用时 15 毫秒
11.
一锅法合成二硝基五亚甲基四胺反应机理的研究 总被引:1,自引:0,他引:1
二硝基五亚甲基四胺(DPT)是高性能单质炸药奥克托金(HMX)的重要硝化前体.以尿素为起始原料,中间产物不分离,经硝化、水解、Mannich缩合等反应得到DPT,总收率63.2%.通过分离、捕获中间体以及同位素示踪实验研究了一锅法合成DPT的反应机理.分离出了稳定的中间体二硝基脲、硝酰胺和二羟甲基硝酰胺,用苯磺酰氯捕获到了活性中间体1-硝基-六氢均三嗪.以氘代甲醛、二羟甲基硝酰胺和氨缩合得到氘标记的DPT,1HNMR和MS分析结果表明:在反应过程中二羟甲基硝酰胺解离释放出甲醛和硝酰胺,小分子碎片随机组合生成了三嗪化合物,进而生成DPT. 相似文献
12.
3-氨基-4-氧代氰基呋咱捕获与表征 总被引:1,自引:0,他引:1
3,4-双(4-氨基呋咱-3-基)氧化呋咱由活性中间体3-氨基-4-氧代氰基呋咱分子间发生二聚获得,但3-氨基-4-氧代氰基呋咱不稳定,无法通过分离、纯化及光谱鉴定证实其存在.采用4种不同的烯烃与3-氨基-4-氧代氰基呋咱发生1,3-偶极环加成反应得到3-(4-氨基呋咱-3-基)-5-氰基-Δ2-异噁唑啉、3-(4-氨基呋咱-3-基)-5-乙酰氧基-Δ2-异噁唑啉、3-(4-氨基呋咱-3-基)-5-正丁基-Δ2-异噁唑啉及3-(4-氨基呋咱-3-基)-环己烷并-Δ2-异噁唑啉4种Δ2-异噁唑啉衍生物;采用苯甲酰氯为捕获剂,与3-氨基-4-氧代氰基呋咱反应获得了3-氨基-4-(N-苯甲酸基氨基羰基)呋咱化合物;通过红外光谱、核磁共振光谱、质谱、元素分析表征了5种新化合物的结构,提供了活性中间体3-氨基-4-氧代氰基呋咱存在的间接证据. 相似文献
13.
通过红外光谱在线监测强酸催化下硝酰胺、甲醛和氨水合成二硝基五亚甲基四胺(DPT)的反应过程, 利用渐进因子分析(EFA)、直观推导式演进特征投影法(HELP)和多元曲线分辨-交替最小二乘法(MCR-ALS)等化学计量学方法对反应过程获得的红外光谱信息进行解析, 得到了各组分纯物质的浓度变化曲线和对应的红外光谱, 并把多元曲线分辨-交替最小二乘法与直观推导式演进特征投影法的分析结果进行比较, 得出可相互验证的一致结论, 以此推测出该反应合理的反应机理. 化学计量学方法对在线红外光谱信息的分辨可以快速有效地反映DPT合成过程中各组分的浓度和红外光谱变化情况, 对其反应机理研究具有重要指导意义. 相似文献
14.
3,3’-偶氮双(6-氨基-1,2,4,5-四嗪)新法合成、表征与量子化学研究 总被引:3,自引:0,他引:3
自行设计了3,3’-偶氮双(6-氨基-1,2,4,5-四嗪)(DAAT)新合成路线、采用3,5-双(3,5-二甲基吡唑-1-基)-1,2,4,5-四嗪(BDT)为原料, 由文献报道的4步反应缩减为2步, 经高压氨解、高锰酸钾氧化合成了DAAT, 总收率大幅提高, 达到58.1%, 并采用元素分析、红外光谱、核磁共振光谱等进行了结构表征. 为了从分子水平探索DAAT的性能, 采用B3LYP法, 在6-31G(d,p)基组水平上对DAAT的结构进行了优化, 计算了其性能, 获得稳定的几何构型、分子轨道及键级; 在振动分析的基础上求得体系的振动频率、IR谱及不同温度下的热力学性质, 并得温度对热力学性能影响的关系式. 结果表明: DAAT分子结构中偶氮基两侧的四嗪环和氨基基本在同一个平面上, 形成一个大的共轭π键; 红外谱计算频率和强度与实验结果整体吻合较好; 热能( )、热容( )和熵( )均随温度的升高而增大. 相似文献
15.
Jing Zhou Junlin Zhang Shaoli Chen Fengqi Zhao Lili Qiu Zihui Meng Li Ding Bozhou Wang Qing Pan 《Molecules (Basel, Switzerland)》2022,27(3)
Molecular perovskites are promising practicable energetic materials with easy access and outstanding performances. Herein, we reported the first comparative thermal research on energetic molecular perovskite structures of (C6H14N2)[NH4(ClO4)3], (C6H14N2)[Na(ClO4)3], and (C6H14ON2)[NH4(ClO4)3] through both calculation and experimental methods with different heating rates such as 2, 5, 10, and 20 °C/min. The peak temperature of thermal decompositions of (C6H14ON2)[NH4(ClO4)3] and (C6H14N2) [Na(ClO4)3] were 384 and 354 °C at the heating rate of 10 °C/min, which are lower than that of (C6H14N2)[NH4(ClO4)3] (401 °C). The choice of organic component with larger molecular volume, as well as the replacement of ammonium cation by alkali cation weakened the cubic cage skeletons; meanwhile, corresponding kinetic parameters were calculated with thermokinetics software. The synergistic catalysis thermal decomposition mechanisms of the molecular perovskites were also investigated based on condensed-phase thermolysis/Fourier-transform infrared spectroscopy method and DSC-TG-FTIR-MS quadruple technology at different temperatures. 相似文献
16.
Jing Zhou Chongmin Zhang Huan Huo Junlin Zhang Zihui Meng Tao Yu Yingzhe Liu Xiaolong Fu Lili Qiu Bozhou Wang 《Molecules (Basel, Switzerland)》2021,26(22)
Dinitropyrazole is an important structure for the design and synthesis of energetic materials. In this work, we reported the first comparative thermal studies of two representative dinitropyrazole-based energetic materials, 4-amino-3,5-dinitropyrazole (LLM-116) and its novel trimer derivative (LLM-226). Both the experimental and theoretical results proved the active aromatic N-H moiety would cause incredible variations in the physicochemical characteristics of the obtained energetic materials. Thermal behaviors and kinetic studies of the two related dinitropyrazole-based energetic structures showed that impressive thermal stabilization could be achieved after the trimerization, but also would result in a less concentrated heat-release process. Detailed analysis of condensed-phase systems and the gaseous products during the thermal decomposition processes, and simulation studies based on ReaxFF force field, indicated that the ring opening of LLM-116 was triggered by hydrogen transfer of the active aromatic N-H moiety. In contrast, the initial decomposition of LLM-226 was caused by the rupture of carbon-nitrogen bonds at the diazo moiety. 相似文献
17.
A new structural type for melt cast materials was designed by linking nitrotetrazole ring with 1,2,4-oxadiazole through a N-CH2-C bridge for the first time. Three N-CH2-C linkage bridged energetic compounds, including 3-((5-nitro-2H-tetrazol-2-yl) methyl)-1,2,4-oxadiazole (NTOM), 3-((5-nitro-2H-tetrazol-2-yl)methyl)-5-(trifluoromethyl)-1,2,4 -oxadiazole (NTOF) and 3-((5-nitro-2H-tetrazol-2-yl)methyl)-5-amine-1,2,4-oxadiazole (NTOA), were designed and synthesized through a two-step reaction by using 2-(5-nitro-2H-tetrazole -2-yl)acetonitrile as the starting material. The synthesized compounds were fully characterized by NMR (1H, 13C), IR spectroscopy and elemental analysis. The single crystals of NTOM, NTOF and NTOA were successfully obtained and investigated by single-crystal X-ray diffraction. The thermal stabilities of these compounds were evaluated by DSC-TG measurements, and their apparent activation energies were calculated by Kissinger and Ozawa methods. The crystal densities of the three compounds were between 1.66 g/cm3 (NTOA) and 1.87 g/cm3 (NTOF). The impact and friction sensitivities were measured by standard BAM fall-hammer techniques, and their detonation performances were computed using the EXPLO 5 (v. 6.04) program. The detonation velocities of the three compounds are between 7271 m/s (NTOF) and 7909 m/s (NTOM). The impact sensitivities are >40 J, and the friction sensitivities are >360 N. NTOM, NTOF and NTOA are thermally stable, with decomposition points > 240 °C. The melting points of NTOM and NTOF are 82.6 °C and 71.7 °C, respectively. Hence, they possess potential to be used as melt cast materials with good thermal stabilities and better detonation performances than TNT. 相似文献
18.
利用密度泛函理论(DFT)的B3LYP/6-31G(d,p)计算方法研究了次氯酸钠氧化环化5-氯-2-硝基苯胺合成5-氯-苯并氧化呋咱的反应, 采用连续介质模型(PCM)评估了溶剂效应. 提出两种可能的分步反应通道: (1)氧化、移氢、脱水和环化, (2)移氢、亚氨基氢扭转、氧化、脱水和环化|前者为优势通道. 非极性的CCl4溶剂有较低的活化能垒, 比极性的乙醇溶剂更有利于5-氯-2-硝基苯胺的合成. 标题反应的机理类似于次氯酸钠氧化邻硝基苯胺合成苯并氧化呋咱, 但其速控步的活化能垒更低, 反应更易进行. 相似文献
19.
Peng Lian Weipeng Lai Haibo Chang Yanan Li Hui Li Wei Yang Youbing Wang Bozhou Wang Yongqiang Xue 《中国化学》2012,30(3):639-643
The structures and the stabilities of polynitrogen compounds N5+Y? [Y=B(CF3)4, BF4, PF6, and B(N3)4], as the potential high energy density compounds, have been investigated at the B3LYP/6‐31G(d,p) and B3LYP/6‐311+G(d,p) levels. On the basis of our geometry optimization calculations, the structural properties of the N5+Y? compounds are discussed, and it is found that the combination of the N5+ cation and the Y? anions leads to distortion of the structures of the Y? anions. Based on the TS calculations for the N2‐loss dissociations of the N5+Y? compounds, the stabilities of these compounds are discussed, and the following conclusion can be drawn that among the four compounds, N5+B(CF3)4? is the most stable one and N5+B(N3)4? is the most unstable, and the relative stability of these compounds is always consistent using different basis sets. From these discussions, it is revealed that there are close correlations between the stuctrual distortions of the Y? anions and the stabilities of the N5+Y? compounds, and between the nitrogen content in the compounds and the stabilities of the N5+Y? compounds. 相似文献
20.
Kangzhen Xu Min Wang Hang Zhang Biao Yan Jirong Song Bozhou Wang Fengqi Zhao 《中国化学》2011,29(11):2293-2300
A new energetic material, 4,5‐diacetoxyl‐2‐(dinitromethylene)‐imidazolidine (DADNI), was synthesized by the reaction of 4,5‐dihydroxyl‐2‐(dinitromethylene)‐imidazolidine (DDNI) and acetic anhydride, and characterized by single crystal X‐ray diffraction. Crystal data for DADNI are monoclinic, space group C2/c, a=15.9167(3) Å, b=8.6816(4) Å, c=8.5209(3) Å, β=103.294(9)°, V=1145.9(3) Å3, Z=4, µ=0.150 mm−1, F(000)=600, Dc=1.682 g·cm−3, R1=0.0565 and wR2=0.1649. Thermal decomposition behavior of DADNI was studied and an intensely exothermic process was observed. The kinetic equation of the decomposition reaction is: dα/dT=(1016.64/β)×4α3/4exp(−1.582×105/RT). The critical temperature of thermal explosion is 163.76°C. The specific heat capacity of DADNI was studied with micro‐DSC method and theoretical calculation method. The molar heat capacity is 343.30 J·mol−1·K−1 at 298.15 K. The adiabatic time‐to‐explosion of DADNI was calculated to be 87.7 s. 相似文献