首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   567篇
  免费   23篇
  国内免费   4篇
化学   383篇
晶体学   1篇
力学   10篇
数学   97篇
物理学   103篇
  2024年   3篇
  2023年   10篇
  2022年   20篇
  2021年   21篇
  2020年   28篇
  2019年   19篇
  2018年   25篇
  2017年   18篇
  2016年   29篇
  2015年   19篇
  2014年   32篇
  2013年   41篇
  2012年   27篇
  2011年   39篇
  2010年   24篇
  2009年   15篇
  2008年   27篇
  2007年   22篇
  2006年   23篇
  2005年   23篇
  2004年   16篇
  2003年   15篇
  2002年   7篇
  2001年   2篇
  2000年   6篇
  1999年   7篇
  1997年   3篇
  1996年   4篇
  1995年   5篇
  1994年   3篇
  1993年   3篇
  1991年   3篇
  1990年   2篇
  1988年   6篇
  1987年   4篇
  1986年   4篇
  1985年   5篇
  1984年   2篇
  1978年   2篇
  1977年   2篇
  1976年   3篇
  1975年   2篇
  1973年   2篇
  1971年   3篇
  1969年   1篇
  1968年   3篇
  1967年   1篇
  1966年   1篇
  1964年   2篇
  1963年   2篇
排序方式: 共有594条查询结果,搜索用时 627 毫秒
31.
Carbon foams have gained significant attention due to their tuneable properties that enable a wide range of applications including catalysis, energy storage and wastewater treatment. Novel synthesis pathways enable novel applications via yielding complex, hierarchical material structure. In this work, activated carbon foams (ACFs) were produced from waste polyurethane elastomer templates using different synthesis pathways, including a novel one-step method. Uniquely, the produced foams exhibited complex structure and contained carbon microspheres. The ACFs were synthesized by impregnating the elastomers in an acidified sucrose solution followed by direct activation using CO2 at 1000 ℃. Different pyrolysis and activation conditions were investigated. The ACFs were characterized by a high specific surface area (SBET) of 2172 m2/g and an enhanced pore volume of 1.08 cm3/g. Computer tomography and morphological studies revealed an inhomogeneous porous structure and the presence of numerous carbon spheres of varying sizes embedded in the porous network of the three-dimensional carbon foam. X-ray diffraction (XRD) and Raman spectroscopy indicated that the obtained carbon foam was amorphous and of turbostratic structure. Moreover, the activation process enhanced the surface of the carbon foam, making it more hydrophilic via altering pore size distribution and introducing oxygen functional groups. In equilibrium, the adsorption of methylene blue on ACF followed the Langmuir isotherm model with a maximum adsorption capacity of 592 mg/g. Based on these results, the produced ACFs have potential applications as adsorbents, catalyst support and electrode material in energy storage systems.  相似文献   
32.
Complexes of atomic gold with a variety of ligands have been formed by passing helium nanodroplets (HNDs) through two pickup cells containing gold vapor and the vapor of another dopant, namely a rare gas, a diatomic molecule (H2, N2, O2, I2, P2), or various polyatomic molecules (H2O, CO2, SF6, C6H6, adamantane, imidazole, dicyclopentadiene, and fullerene). The doped HNDs were irradiated by electrons; ensuing cations were identified in a high-resolution mass spectrometer. Anions were detected for benzene, dicyclopentadiene, and fullerene. For most ligands L, the abundance distribution of AuLn+ versus size n displays a remarkable enhancement at n = 2. The propensity towards bis-ligand formation is attributed to the formation of covalent bonds in Au+L2 which adopt a dumbbell structure, L-Au+-L, as previously found for L = Xe and C60. Another interesting observation is the effect of gold on the degree of ionization-induced intramolecular fragmentation. For most systems gold enhances the fragmentation, i.e., intramolecular fragmentation in AuLn+ is larger than in pure Ln+. Hydrogen, on the other hand, behaves differently, as intramolecular fragmentation in Au(H2)n+ is weaker than in pure (H2)n+ by an order of magnitude.  相似文献   
33.
The remarkable significance of electrode materials in industrial processes, energy, sustainability and diabetes monitoring has captivated scientists to develop advance nanomaterials for the benefit of life across the globe. Here in, the recent developments in nanostructured porous metal and metal oxide composite materials for supercapacitor applications and non-enzymatic glucose sensors (NEGS) has been extensively discussed. The essential and active electrode materials from the research and application perspective has been emphasized in detail. We have also evaluated the worthiness, taxonomical classification, efficiency, specific capacitance and sensitivity of these materials for the aforementioned potential applications. Eventually, we concluded the review by providing the aspect ratio, surface morphology, particle size and specific surface area of these materials that plays an indispensable role for their promising potential applications.  相似文献   
34.
(La0.8Sr0.2)0.95MnO3?δ (LSM)–Gd0.1Ce0.9O2?δ (gadolinium-doped ceria, GDC) composite cathode material was developed and characterized in terms of chemical stability, sintering behaviour, electrical conductivity, mechanical strength and microstructures to assess its feasibility as cathode support applications in cathode-supported fuel cell configurations. The sintering inhibition effect of LSM, in the presence of GDC, was observed and clearly demonstrated. The mechanical characterization of developed composites revealed that fracture behaviour is directly affected by pore size distribution. The Weibull strength distribution showed that for bimodal pore size distribution, two different fracture rates were present. Furthermore, the contiguity of LSM and GDC grains was calculated with image analysis, and correlation of microstructural features with mechanical and electrical properties was established. Subsequently, an LSM/GDC-based cathode-supported direct carbon fuel cell (DCFC) with Ni/ScSZ (scandia-stabilised zirconia) anode was successfully fabricated via slurry coating and co-firing techniques. The microstructures of electrodes and electrolyte layers were observed to confirm the desired morphology after co-sintering, and a single cell was electrochemically characterized in solid oxide fuel cell (SOFC) and DCFC mode with ambient air as oxidant. The higher values of open-circuit voltage indicated that the electrolyte layer prepared by vacuum slurry coating is dense enough. The corresponding peak power densities at 850 °C were 450 and 225 mW cm?2 in SOFC and DCFC mode, respectively. Electrochemical impedance spectroscopy was carried out to observe electrode polarization and ohmic resistance.  相似文献   
35.
Noninvasive monitoring of vascularization can potentially diagnose impaired bone healing earlier than current radiographic methods. In this study, a noncontact diffuse correlation tomography (DCT) technique was employed to measure longitudinal blood flow changes during bone healing in a murine femoral fracture model. The three-dimensional distribution of the relative blood flow was quantified from one day pre-fracture to 48 days post-fracture. For three mice, frequent DCT measurements were performed every other day for one week after fracture, and then weekly thereafter. A decrease in blood flow was observed in the bone fracture region at one day post-fracture, followed by a monotonic increase in blood flow beyond the pre-injury baseline until five to seven days post-fracture. For the remaining 12 mice, only weekly DCT measurements were performed. Data collected on a weekly basis show the blood flow for most mice was elevated above baseline during the first two post-fracture weeks, followed by a subsequent decrease. Torsional strength of the excised femurs was measured for all 15 mice after 7 weeks of healing. A metric based on the early blood flow changes shows a statistically significant difference between the high strength group and the low strength group.  相似文献   
36.
Dracaena reflexa, a traditionally significant medicinal plant, has not been extensively explored before for its phytochemical and biological potential. The present study was conducted to evaluate the bioactive phytochemicals and in vitro biological activities of D. reflexa, and perform in silico molecular docking validation of D. reflexa. The bioactive phytochemicals were assessed by preliminary phytochemical testing, total bioactive contents, and GC-MS analysis. For biological evaluation, the antioxidant (DPPH, ABTS, CUPRAC, and ABTS), antibacterial, thrombolytic, and enzyme inhibition (tyrosinase and cholinesterase enzymes) potential were determined. The highest level of total phenolic contents (92.72 ± 0.79 mg GAE/g extract) was found in the n-butanol fraction while the maximum total flavonoid content (110 ± 0.83 mg QE/g extract) was observed in methanolic extract. The results showed that n-butanol fraction exhibited very significant tyrosinase inhibition activity (73.46 ± 0.80) and acetylcholinesterase inhibition activity (64.06 ± 2.65%) as compared to other fractions and comparable to the standard compounds (kojic acid and galantamine). The methanolic extract was considered to have moderate butyrylcholinesterase inhibition activity (50.97 ± 063) as compared to the standard compound galantamine (53.671 ± 0.97%). The GC-MS analysis of the n-hexane fraction resulted in the tentative identification of 120 bioactive phytochemicals. Furthermore, the major compounds as identified by GC-MS were analyzed using in silico molecular docking studies to determine the binding affinity between the ligands and the enzymes (tyrosinase, acetylcholinesterase, and butyrylcholinesterase enzymes). The results of this study suggest that Dracaena reflexa has unquestionable pharmaceutical importance and it should be further explored for the isolation of secondary metabolites that can be employed for the treatment of different diseases.  相似文献   
37.
Faisal  Muhammad  Saeed  Aamer  Shahzad  Danish  Dar  Parsa  Larik  Fayaz Ali 《Molecular diversity》2020,24(2):571-592
Molecular Diversity - Aldehydes and ketones are parts of millions of compounds and are important classes of chemicals which serve as important precursors for the synthesis of library of compounds....  相似文献   
38.
Ferroptosis is a recently described programmed cell death mechanism that is characterized by the buildup of iron (Fe)-dependent lipid peroxides in cells and is morphologically, biochemically, and genetically distinct from other forms of cell death, having emerged to play an important role in cancer biology. Ferroptosis has significant importance during cancer treatment because of the combination of factors, including suppression of the glutathione peroxidase 4 (Gpx4), cysteine deficiency, and arachidonoyl (AA) peroxidation, which cause cells to undergo ferroptosis. However, the physiological significance of ferroptosis throughout development is still not fully understood. This current review is focused on the factors and molecular mechanisms with the diagrammatic illustrations of ferroptosis that have a role in the initiation and sensitivity of ferroptosis in various malignancies. This knowledge will open a new road for research in oncology and cancer management.  相似文献   
39.
The oxidation of CO is the archetypal heterogeneous catalytic reaction and plays a central role in the advancement of fundamental studies, the control of automobile emissions, and industrial oxidation reactions. Copper‐based catalysts were the first catalysts that were reported to enable the oxidation of CO at room temperature, but a lack of stability at the elevated reaction temperatures that are used in automobile catalytic converters, in particular the loss of the most reactive Cu+ cations, leads to their deactivation. Using a combined experimental and theoretical approach, it is shown how the incorporation of titanium cations in a Cu2O film leads to the formation of a stable mixed‐metal oxide with a Cu+ terminated surface that is highly active for CO oxidation.  相似文献   
40.
经过数次技术研究和超常创新战略的大发展,生物催化逐渐达到工业化水平,从而受到人们特别的关注.基于酶值,通过生物途径生产高附加值化合物和精细工业化学品成为人们最感兴趣的领域之一.更广泛的众多生物化学路线可由酶催化来实现,其中还有一些酶尚未被人们发现.另一方面,由于非同源底物和某些化学过程所必需的苛刻条件,导致酶催化过程的效率低、稳定性差,因而限制了生物催化的应用.因此,开发具有多催化特征、更高效率和稳定性的绿色催化剂,成为生物催化的重中之重.计算科学、代谢工程、合成生物,以及机器学习路线的运用为新催化剂的工程化提供了新方法.本文重点介绍了合成生物学和代谢工程在催化中的作用,讨论了用于催化的机器学习算法和如何选择一种预测蛋白质-配体相互作用的算法;为了预测键合和催化功能,综述了分子对接的重要性;最后给出了结束语、未来挑战和前景展望.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号