首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   183篇
  免费   15篇
  国内免费   1篇
化学   81篇
晶体学   2篇
力学   23篇
数学   39篇
物理学   54篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   6篇
  2018年   6篇
  2017年   3篇
  2016年   10篇
  2015年   13篇
  2014年   7篇
  2013年   19篇
  2012年   12篇
  2011年   25篇
  2010年   13篇
  2009年   12篇
  2008年   5篇
  2007年   4篇
  2006年   5篇
  2005年   5篇
  2004年   4篇
  2003年   3篇
  2002年   3篇
  2001年   3篇
  2000年   4篇
  1999年   4篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1984年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
  1941年   1篇
排序方式: 共有199条查询结果,搜索用时 31 毫秒
31.
Within the scope of Bianchi type-III spacetime we study the role of spinor field on the evolution of the Universe as well as the influence of gravity on the spinor field. In doing so we have considered a polynomial type of nonlinearity. In this case the spacetime remains locally rotationally symmetric and anisotropic all the time. It is found that depending on the sign of nonlinearity the models allows both accelerated and oscillatory modes of expansion. The non-diagonal components of energy-momentum tensor though impose some restrictions on metric functions and components of spinor field, unlike Bianchi type I, V and V I 0 cases, they do not lead to vanishing mass and nonlinear terms of the spinor field.  相似文献   
32.
The multistability of a Fabry-Perot semiconductor diode laser for an injection current is presented when multi-optical inputs detuned from the cavity-resonant wavelength of a semiconductor laser are injected. m+1 Multi-stable states are shown to be produced in the optical output versus injection current characteristics for m detuned optical inputs. It is shown that optical output can be switched in any one of the optical input wavelengths in a relatively fast response time by applying injection current pulses. Analytical expression based on linear stability analysis is presented to predict the switching time to free oscillating mode, and larger optical input power and detuning are effective to shorten the switching time. The results here are believed to be useful to extend wavelength switching to a scope of electronic manipulation without modulation of optical inputs and can be applicable to actual devices.  相似文献   
33.
A new approach for optimal shape design is introduced. The main ingredients are an unstructured CAD-free framework for geometry deformation and automatic differentiation (AD) in reverse mode. Transonic inviscid and viscous turbulent flows are investigated. Both two- and three- dimensional configurations are considered. These cases involve up to several thousand control parameters. © 1997 John Wiley & Sons, Ltd.  相似文献   
34.
In this paper, an H ?? output feedback controller is developed for a class of time-delayed MIMO nonlinear systems, containing backlash as an input nonlinearity. Particularly, a state observer is proposed to estimate unmeasurable states. The control law can be divided into two elements: An adaptive interval type-2 fuzzy part which approximates the uncertain model. The second part is an H ??-based controller, which attenuates the effects of external disturbances and approximation errors to a prescribed level. Furthermore, the Lyapunov theorem is used to prove stability of proposed controller and its robustness to external disturbance, hysteresis input nonlinearity, and time varying time-delay. As an example, the designed controller is applied to address the tracking problem of 2-DOF robotic manipulator. Simulation results not only verify the robust properties but also in comparison with an existing method reveal the ability of the proposed controller to exclude the effects of unknown time varying time-delays and hysteresis input nonlinearity.  相似文献   
35.
36.
Within the scope of Bianchi type VI,VI0,V, III, I, LRSBI and FRW cosmological models we have studied the role of nonlinear spinor field on the evolution of the Universe and the spinor field itself. It was found that due to the presence of non-trivial non-diagonal components of the energy-momentum tensor of the spinor field in the anisotropic space-time, there occur some severe restrictions both on the metric functions and on the components of the spinor field. In this report we have considered a polynomial nonlinearity which is a function of invariants constructed from the bilinear spinor forms. It is found that in case of a Bianchi type-VI space-time, depending of the sign of self-coupling constants, the model allows either late time acceleration or oscillatory mode of evolution. In case of a Bianchi VI0 type space-time due to the specific behavior of the spinor field we have two different scenarios. In one case the invariants constructed from bilinear spinor forms become trivial, thus giving rise to a massless and linear spinor field Lagrangian. This case is equivalent to the vacuum solution of the Bianchi VI0 type space-time. The second case allows non-vanishing massive and nonlinear terms and depending on the sign of coupling constants gives rise to accelerating mode of expansion or the one that after obtaining some maximum value contracts and ends in big crunch, consequently generating space-time singularity. In case of a Bianchi type-V model there occur two possibilities. In one case we found that the metric functions are similar to each other. In this case the Universe expands with acceleration if the self-coupling constant is taken to be a positive one, whereas a negative coupling constant gives rise to a cyclic or periodic solution. In the second case the spinor mass and the spinor field nonlinearity vanish and the Universe expands linearly in time. In case of a Bianchi type-III model the space-time remains locally rotationally symmetric all the time, though the isotropy of space-time can be attained for a large proportionality constant. As far as evolution is concerned, depending on the sign of coupling constant the model allows both accelerated and oscillatory mode of expansion. A negative coupling constant leads to an oscillatory mode of expansion, whereas a positive coupling constant generates expanding Universe with late time acceleration. Both deceleration parameter and EoS parameter in this case vary with time and are in agreement with modern concept of space-time evolution. In case of a Bianchi type-I space-time the non-diagonal components lead to three different possibilities. In case of a full BI space-time we find that the spinor field nonlinearity and the massive term vanish, hence the spinor field Lagrangian becomes massless and linear. In two other cases the space-time evolves into either LRSBI or FRW Universe. If we consider a locally rotationally symmetric BI(LRSBI) model, neither the mass term nor the spinor field nonlinearity vanishes. In this case depending on the sign of coupling constant we have either late time accelerated mode of expansion or oscillatory mode of evolution. In this case for an expanding Universe we have asymptotical isotropization. Finally, in case of a FRW model neither the mass term nor the spinor field nonlinearity vanishes. Like in LRSBI case we have either late time acceleration or cyclic mode of evolution. These findings allow us to conclude that the spinor field is very sensitive to the gravitational one.  相似文献   
37.
In present paper, the analytical expression for the cross-spectral density of the phase-locked Partially Coherent Flat-Topped (PCFT) array beams propagating through oceanic turbulence based on the extended Huygens–Fresnel integral is derived. Then, the polarization behavior and generalized Stokes parameters of the phase-locked PCFT array beam propagating through oceanic turbulence using the cross-spectral density matrix elements have been achieved. In this paper, the case of the clearwater oceanic turbulence has been considered, i.e. it has been assumed that the light wave is not affected by suspended organic and inorganic impurities. Due to the above-mentioned reason and the turbulence importance, the impacts of oceanic turbulence have been scrutinized, while the effects of absorption and scattering have been ignored. The changes in the Stokes parameters, the fluctuation of Stokes parameters, and consequently the state of polarization (including the spectral degree of polarization, the orientation angle and the degree of ellipticity) of the phase-locked PCFT array beams for different turbulence conditions upon propagation have been investigated. The results may find possible applications in underwater communication.  相似文献   
38.
In this review we discuss the evolution of the universe filled with dark energy with or without perfect fluid. In doing so we consider a number of cosmological models, namely Bianchi type I, III, V, VI0, VI and FRW ones. For the anisotropic cosmological models we have used proportionality condition as an additional constrain. The exact solutions to the field equations in quadrature are found in case of a BVI model. It was found that the proportionality condition used here imposed severe restriction on the energy-momentum tensor, namely it leads to isotropic distribution of matter. Anisotropic BVI0, BV, BIII and BIDE models with variable EoS parameter ω have been investigated by using a law of variation for the Hubble parameter. In this case the matter distribution remains anisotropic, though depending on the concrete model there appear different restrictions on the components of energy-momentum tensor. That is why we need an extra assumption such as variational a law for the Hubble parameter. It is observed that, at the early stage, the EoS parameter v is positive i.e. the universe was matter dominated at the early stage but at later time, the universe is evolving with negative values, i.e., the present epoch. DE model presents the dynamics of EoS parameter ω whose range is in good agreement with the acceptable range by the recent observations. A spatially homogeneous and anisotropic locally rotationally symmetric Bianchi-I space time filled with perfect fluid and anisotropic DE possessing dynamical energy density is studied. In the derived model, the EoS parameter of DE (ω(de)) is obtained as time varying and it is evolving with negative sign which may be attributed to the current accelerated expansion of Universe. The distance modulus curve of derived model is in good agreement with SNLS type Ia supernovae for high redshift value which in turn implies that the derived model is physically realistic. A system of two fluids within the scope of a spatially flat and isotropic FRW model is studied. The role of the two fluids, either minimally or directly coupled in the evolution of the dark energy parameter, has been investigated. In doing so we have used three different ansatzs regarding the scale factor that gives rise to a variable decelerating parameter. It is observed that, in the non-interacting case, both the open and flat universes can cross the phantom region whereas in the interacting case only the open universe can cross the phantom region. The stability and acceptability of the obtained solution are also investigated.  相似文献   
39.
A scheme for a high-speed wavelength encoded all-optical S–R flip-flop (or a digital memory cell for storing of optical bits) based on wavelength conversion (MZI) in semiconductor optical amplifier (SOA) and phase conjugation system (PCS) is proposed. The switching action of semiconductor optical amplifier (SOA) does not give too high operational speed because of electrical pumping power. But optical phase conjugation mechanism gives us ultrahigh operational speed. So, joint use of them gives rise to a more high speed system comparatively to only SOA based switches. Here two logic states of the whole system is encoded by two wavelengths as well as frequencies, since the information in the bit is unaffected throughout the communication not having regard to the loss of light energy due to reflection, refraction polarization, etc.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号