首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   547篇
  免费   4篇
  国内免费   2篇
化学   342篇
力学   19篇
数学   117篇
物理学   75篇
  2020年   8篇
  2019年   3篇
  2018年   5篇
  2016年   5篇
  2015年   6篇
  2014年   9篇
  2013年   43篇
  2012年   11篇
  2011年   13篇
  2010年   3篇
  2009年   8篇
  2008年   21篇
  2007年   14篇
  2006年   17篇
  2005年   19篇
  2004年   17篇
  2003年   11篇
  2002年   24篇
  2001年   18篇
  2000年   6篇
  1999年   8篇
  1998年   9篇
  1997年   11篇
  1996年   20篇
  1995年   8篇
  1994年   15篇
  1993年   7篇
  1992年   13篇
  1991年   3篇
  1990年   9篇
  1989年   10篇
  1988年   9篇
  1987年   9篇
  1986年   3篇
  1985年   10篇
  1984年   9篇
  1983年   14篇
  1982年   10篇
  1981年   11篇
  1980年   19篇
  1979年   11篇
  1978年   11篇
  1977年   5篇
  1976年   11篇
  1975年   7篇
  1974年   5篇
  1973年   8篇
  1972年   3篇
  1971年   6篇
  1970年   6篇
排序方式: 共有553条查询结果,搜索用时 15 毫秒
61.
X-ray diffraction data of high quality measured to high resolution on crystals of the two pentitol epimers ribitol (centric) and xylitol (acentric) at 101, 141, and 181 K and data on the two compounds previously recorded at 122 K have formed the basis for multipole refinements with the VALRAY system. Our analysis showed that it is possible to obtain a reliable crystal electron density for an acentric compound (xylitol) from X-ray diffraction data and that the thermal motion can be deconvoluted from the static density in this temperature range. The Bader-type topological analysis of the static electron densities revealed virtually identical intramolecular interactions as well as very similar hydrogen bond interactions of ribitol and xylitol; the only minor differences are found in the weaker intermolecular interactions. The high-level periodic DFT calculations are in accordance with the thermodynamic measurements that show that the two pentitols have identical sublimation energies. A rigid body normal coordinate analysis was performed on the atomic displacement parameters obtained at the four different temperatures. The translational and librational mean square deviations derived through this analysis were used in a quantum statistical approach to derive frequencies of the corresponding harmonic oscillators. The analysis showed a consistent vibrational model for all temperatures. The frequencies were subsequently used to calculate crystal entropies assuming an Einstein-type behavior. These calculations show that the crystal entropy of ribitol is 8 J K(-1) mol(-1) higher than the crystal entropy of xylitol, confirming that it is a difference in the entropy of the two compounds that causes the difference in their free energy. Our results presented in this Article show the potential to use X-ray diffraction data to obtain physicochemical properties of crystals.  相似文献   
62.

Background  

Protein kinase A type I (PKAI) and PKAII are expressed in most of the eukaryotic cells examined. PKA is a major receptor for cAMP and specificity is achieved partly through tissue-dependent expression and subcellular localization of subunits with different biochemical properties. In addition posttranslational modifications help fine tune PKA activity, distribution and interaction in the cell. In spite of this the functional significance of two forms of PKA in one cell has not been fully determined. Here we have tested the ability of PKAI and PKAII formed by expression of the regulatory (R) subunits RIα or RIIα in conjunction with Cα1 or Cβ2 to activate a co-transfected luciferace reporter gene, controlled by the cyclic AMP responsive element-binding protein (CREB) in vivo.  相似文献   
63.
Methane plays a central role in gas layers of temperatures up to around 3000 K in a number of astrophysical objects ranging from giant planets to brown dwarfs, over proto-solar nebulae, to several classes of cool stars. In order to model and analyse these objects correctly, an accurate and complete list of spectral lines at high temperature is demanded. Predicting high temperature spectra implies, however, predicting hot bands and thus modelling highly excited vibrational states. This is a real challenge in the case of methane. We report the preliminary results of a theoretical study combining the global effective Hamiltonian approach and its computational implementation (STDS package: http://www.u-bourgogne.fr/LPUB/shTDS.html) with semi-quantitative statistical considerations.  相似文献   
64.
In modern cancer therapy the clinical application of platinum‐based drugs is more and more limited by the occurrence of intrinsic or acquired resistances. In this context the potential use of dinuclear platinum complexes in chemotherapy is increasingly relevant. The novel complexes Pd(Bzdpa)Cl2, Pd2(C4H8(dpa)2)Cl4, and Pt2(C4H8(dpa)2)Cl4 allow a direct comparison of mono‐ and dinuclear palladium and platinum complexes respectively deriving from a 2,2′‐dipyridylamine (Hdpa) ligand system. They were characterized by single crystal X‐ray analysis as well as infrared spectroscopy and elemental analysis. The cisplatin analogous mononuclear palladium complex Pd(Bzdpa)Cl2 ( 1 ) (Bzdpa: (2,2′‐dipyridylbenzyl)amine) belongs to a range of 2,2′‐dipyridylamine‐based compounds which were extensively studied in our laboratories. 1 crystallizes in the orthorhombic space group Pna21 with a = 13.722(3), b = 13.457(3), c = 9.483(2), V = 1751.1(6) Å3, and Z = 4. The metal binding motif of 1 was expanded by a flexible butyl‐linker to form the tetradentate C4H8(dpa)2 ligand. The resulting isotypic dinuclear complexes Pd2(C4H8(dpa)2)Cl4·2CH3CN ( 2 ) and Pt2(C4H8(dpa)2)Cl4·2CH3CN ( 3 ) crystallize in the triclinic space group with a = 7.8427(2), b = 8.7940(2), c = 11.7645 (3), α = 79.219(2)°, β = 84.033(2)°, γ = 87.744(2)°, V = 792.58(3) Å3 ( 2 ) and a = 7.831(5), b = 8.814(5), c = 11.817(5), α = 79.271(5)°, β = 83.571(5)°, γ = 88.063(5)°, V = 796.3(8) Å3 ( 3 ), both with one centrosymmetrical molecule in the unit cell.  相似文献   
65.
We prove that the electron densities of electronic eigenfunctions of atoms and molecules are smooth away from the nuclei.  相似文献   
66.
67.
68.
69.
The purpose of this paper is to present a general stochastic calculus approach to insider trading. We consider a market driven by a standard Brownian motion $B(t)$ on a filtered probability space $\displaystyle (\Omega,\F,\left\{\F\right\}_{t\geq 0},P)$ where the coefficients are adapted to a filtration ${\Bbb G}=\left\{\G_t\right\}_{0\leq t\leq T}$, with $\F_t\subset\G_t$ for all $t\in [0,T]$, $T>0$ being a fixed terminal time. By an {\it insider} in this market we mean a person who has access to a filtration (information) $\displaystyle{\Bbb H}=\left\{\H_t\right\}_{0\leq t\leq T}$ which is strictly bigger than the filtration $\displaystyle{\Bbb G}=\left\{\G_t\right\}_{0\leq t\leq T}$. In this context an insider strategy is represented by an $\H_t$-adapted process $\phi(t)$ and we interpret all anticipating integrals as the forward integral defined in [23] and [25]. We consider an optimal portfolio problem with general utility for an insider with access to a general information $\H_t \supset\G_t$ and show that if an optimal insider portfolio $\pi^*(t)$ of this problem exists, then $B(t)$ is an $\H_t$-semimartingale, i.e. the enlargement of filtration property holds. This is a converse of previously known results in this field. Moreover, if $\pi^*$ exists we obtain an explicit expression in terms of $\pi^*$ for the semimartingale decomposition of $B(t)$ with respect to $\H_t$. This is a generalization of results in [16], [20] and [2].  相似文献   
70.
We investigate if there is any inertial dragging effect associated with vacuum energy. Spacetime inside and outside a rotating thin shell, as well as the mechanical properties of the shell, are analyzed by means of Israel's general relativistic theory of surface layers. Our investigation generalizes that of Brill and Cohen, who found vacuum-solutions of Einstein's field equations (with vanishing cosmological constant), inside and outside a rotating shell. We include a nonvanishing vacuum-energy inside the shell. It is found that the inertial dragging angular velocity increases with increasing density of vacuum energy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号