首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   526篇
  免费   33篇
化学   486篇
力学   3篇
数学   16篇
物理学   54篇
  2023年   10篇
  2022年   7篇
  2021年   14篇
  2020年   18篇
  2019年   27篇
  2017年   4篇
  2016年   22篇
  2015年   16篇
  2014年   20篇
  2013年   15篇
  2012年   33篇
  2011年   31篇
  2010年   14篇
  2009年   19篇
  2008年   28篇
  2007年   21篇
  2006年   25篇
  2005年   24篇
  2004年   9篇
  2003年   14篇
  2002年   21篇
  2001年   14篇
  2000年   7篇
  1999年   13篇
  1998年   9篇
  1997年   16篇
  1996年   13篇
  1995年   2篇
  1994年   6篇
  1993年   4篇
  1992年   3篇
  1991年   3篇
  1990年   2篇
  1989年   6篇
  1988年   4篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1983年   7篇
  1982年   5篇
  1981年   8篇
  1980年   3篇
  1979年   5篇
  1978年   2篇
  1976年   4篇
  1975年   3篇
  1972年   2篇
  1918年   4篇
  1909年   3篇
  1903年   2篇
排序方式: 共有559条查询结果,搜索用时 15 毫秒
371.
The structure of 1,3,5-trimethyl-1,3,5-triaza-cyclohexane (TMTAC) was determined by single crystal X-ray diffraction and compared with earlier gas-phase data. It shows a preference for an aee-conformation in all phases. Lithiated TMTAC, [(RLi)(2)·(RH)] (1) (R = 2,4,6-trimethyl-2,4,6-triaza-cyclohex-1-yl), was reacted with Et(3)SiCl, Ph(3)SiCl and PhMe(2)SiCl to afford the substituted silanes Et(3)SiR (1), Ph(3)SiR (2) and PhMe(2)SiR (3) in moderate yields. They were characterised by NMR spectroscopy ((1)H, (13)C, (29)Si). 1 reacts with Me(2)SiCl(2) and Ph(2)SiCl(2) to give Me(2)SiR(2) (5) and Ph(2)SiR(2) (6) which were characterised by NMR spectroscopy. 5 was also identified by crystal structure determination. Analogous triple substitution could not be observed by employing trichlorosilanes. Quantumchemical calculations explain this by sterical overcrowding of the silicon atom. The reaction of 1 with SiCl(4) did not yield fourfold substitution but a formal insertion product of SiCl(2) into a C-N bond of the TMTAC ring (2,4,6-trimethyl-2,4,6-triaza-1,1-dichloro-1-sila-cycloheptane, 7) in very small quantities. It was identified by X-ray crystallography and shows an intramolecular Si···N dative bond. The reactions of (3) and (5) with n-butyl lithium afforded lithiation of the silicon bound methyl groups in both cases. The products, 8 and 9, were characterised by NMR spectroscopy ((1)H, (13)C, (29)Si), 8 was also characterised by X-ray crystallography.  相似文献   
372.
Monitoring of the formation of stable fluorescent nanoparticles from controlled mixing of a THF solution of poly(fluorene ethynylene)-block-poly(ethylene glycol) in a microfluidic laminar flow crossjunction by spatially resolved fluorescence spectroscopy reveals the time scale of particle formation as well as incorporation of small molecule guests and the role of solvent mixing.  相似文献   
373.
Radiation-induced lattice defects in high-purity niobium have been investigated in the temperature range of 30K to 540 K by means of - perturbed angular correlation (PAC) measurements using the radioactive probes100Pd/100Rh and111In/111Cd. Both probes were produced within the niobium samples by means of heavy-ion nuclear reactions. At the Pd impurities trapping of defects occurred during heavy-ion irradiation at about 30 K in two defined configurations: defect 1(Pd) withv Q1=e 2 qQ/h=42(±2) MHz, 1=0 and defect 2 (Pd) withv Q2=(±2) MHz, 2=1. Two defects were observed at the In impurities in annealing stage III (around 250 K) after heavy-ion as well as electron irradiations: defect 1(In) withv Q1=87(±1) MHz, 1=0 and defect 2(In) withv Q2=105(±2) MHz, 2=0.65(±0.02). A third defect (defect 3(In):v Q3=177(±2) MHz, 30.2) appeared above 260 K after heavy-ion irradiation only. The data are interpreted in terms of interstitial trapping at the Pd impurities and vacancy trapping at the In impurities. Information on the microscopic structure of defect 1(In) and 2(In) is obtained from a PAC-single-crystal experiment. For defect 1(In) axial 111-symmetry is found, which leads us to identify this defect with a monovacancy as nearest neighbor with respect to the In probe. Defect 2(In) is the trapped divacancy for which an orientation is found that is consistent with both vacancies being nearest neighbor to the probe but second nearest neighbors to each other.  相似文献   
374.
JPC – Journal of Planar Chromatography – Modern TLC - Lipids are important natural products and essential in nutrition, cosmetic formulations, pharmaceuticals, etc. Lipids and,...  相似文献   
375.
376.
The combination of propofol, ketamine and rocuronium can be used for anesthesia of ventilated rats. However, reliable pharmacokinetic models of these drugs have yet to be developed in rats, and consequently optimal infusion strategies are also unknown. Development of pharmacokinetic models requires repeated measurements of drug concentrations. In small animals, samples must be tiny to avoid excessing blood extraction. We therefore developed a drug assay system using high‐performance liquid chromatography coupled with quadrupole mass spectrometry that simultaneously determines the concentration of all three drugs in just 10 μL rat plasma. We established a plasma extraction protocol, using acetonitrile as the precipitating reagent. Calibration curves were linear with R2 = 0.99 for each drug. Mean recovery from plasma was 91–93% for propofol, 89–93% for ketamine and 90–92% for rocuronium. The assay proved to be accurate for propofol 4.1–8.3%, ketamine 1.9–7.8% and rocuronium ?3.6–4.7% relative error. The assay was also precise; the intra‐day precisions were propofol 2.0–4.0%, ketamine 2.7–2.9% and rocuronium 2.9–3.3% relative standard deviation. Finally, the method was successfully applied to measurement the three drugs in rat plasma samples. Mean plasma concentrations with standard deviations were propofol 2.0 μg/mL ±0.5%, ketamine 3.9 μg/mL ±1.0% and rocuronium 3.2 μg/mL ±0.8% during ventilation.  相似文献   
377.
378.
379.
380.
The new chloro(cyclopentadienyl)silanes Cp′SiHyCl3−y (Cp′=Me4EtC5, y=1: 1; Cp′=Me4C5H, y=1: 2; y=0: 3; Cp′=Me3C5H2, y=1: 4 and pentachloro(cyclopentadienyl)disilanes Cp′Si2Cl5 (Cp′=Me5C5 5, Me4EtC5 6, Me4C5H 7, Me3C5H2 8, Me3SiC5H4 9) are synthesized in good yields via metathesis reactions. Treatment of 1–9 with LiAlH4 leads under Cl–H exchange to the hydridosilyl compounds Cp′SiH3 (Cp′=Me4EtC5 10, Me4C5H 11, Me3C5H2 12) and to the hydridodisilanyl compounds Cp′Si2H5 (Cp′=Me5C5 13, Me4EtC5 14, Me4C5H 15, Me3C5H2 16, Me3SiC5H4 17). Complexes 1–17 are characterized by 1H, 13C, and 29Si-NMR spectroscopy, IR spectroscopy, mass spectrometry and CH-analysis. The structures of 6, 7 and 9 are determined by single-crystal X-ray diffraction analysis. Pyrolysis studies of the cyclopentadienylsilanes 10–12 and disilanes 13–17 show their suitability as precursors in the MOCVD process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号