首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   155篇
  免费   9篇
化学   154篇
数学   2篇
物理学   8篇
  2022年   4篇
  2021年   4篇
  2020年   2篇
  2019年   3篇
  2018年   7篇
  2016年   3篇
  2015年   6篇
  2014年   3篇
  2013年   5篇
  2012年   9篇
  2011年   12篇
  2010年   10篇
  2009年   6篇
  2008年   9篇
  2007年   12篇
  2006年   16篇
  2005年   10篇
  2004年   8篇
  2003年   5篇
  2002年   9篇
  2001年   5篇
  2000年   1篇
  1998年   2篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
排序方式: 共有164条查询结果,搜索用时 15 毫秒
161.
The magnetic field effect (0?C0.47?T) on cathodic potential oscillation of a zinc cathode in an alkaline solution was studied. By applying a magnetic field, the oscillation interval increased. The oscillation was quenched at 0.47?T. In situ bore-scope observation of the cathode during electrolysis in magnetic fields revealed that the solution convection induced by the Lorentz force causes the observed effect.  相似文献   
162.
We describe a novel valve-based microfluidic axon injury micro-compression (AIM) platform that enables focal and graded compression of micron-scale segments of single central nervous system (CNS) axons. The device utilizes independently controlled "push-down" injury pads that descend upon pressure application and contact underlying axonal processes. Regulated compressed gas is input into the AIM system and pressure levels are modulated to specify the level of injury. Finite element modeling (FEM) is used to quantitatively characterize device performance and parameterize the extent of axonal injury by estimating the forces applied between the injury pad and glass substrate. In doing so, injuries are normalized across experiments to overcome small variations in device geometry. The AIM platform permits, for the first time, observation of axon deformation prior to, during, and immediately after focal mechanical injury. Single axons acutely compressed (~5 s) under varying compressive loads (0-250 kPa) were observed through phase time-lapse microscopy for up to 12 h post injury. Under mild injury conditions (< 55 kPa) ~73% of axons continued to grow, while at moderate (55-95 kPa) levels of injury, the number of growing axons dramatically reduced to 8%. At severe levels of injury (> 95 kPa), virtually all axons were instantaneously transected and nearly half (~46%) of these axons were able to regrow within the imaging period in the absence of exogenous stimulating factors.  相似文献   
163.
Effects of magnetic field (maximum field, 4 and 93 T(2) m(-1)) on the propagation speed of a chemical wavefront from the Belousov-Zhabotinsky reaction were studied in a thin glass tube. The downward and upward speed and the horizontal one are, respectively affected significantly by vertical and horizontal magnetic fields. Observations of the wavefront shape in magnetic fields showed that the magnetic force-induced convection causes the observed effects.  相似文献   
164.
α-Amylase catalyzes hydrolysis of starch to oligosaccharides, which are further degraded to simple sugars. The enzyme has been widely used in food and textile industries and recently, in generation of renewable energy. An α-amylase from yeast Saccharomycopsis fibuligera R64 (Sfamy) is active at 50 °C and capable of degrading raw starch, making it attractive for the aforementioned applications. To improve its characteristics as well as to provide information for structural study ab initio, the enzyme was chemically modified by acid anhydrides (nonpolar groups), glyoxylic acid (GA) (polar group), dimethyl adipimidate (DMA) (cross-linking), and polyethylene glycol (PEG) (hydrophilization). Introduction of nonpolar groups increased enzyme stability up to 18 times, while modification by a cross-linking agent resulted in protection of the calcium ion, which is essential for enzyme activity and integrity. The hydrophilization with PEG resulted in protection against tryptic digestion. The chemical modification of Sfamy by various modifiers has thereby resulted in improvement of its characteristics and provided systematic information beneficial for structural study of the enzyme. An in silico structural study of the enzyme improved the interpretation of the results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号