This study was carried out to better understand the biokinetics of radiocesium in clams living in sediment. The accumulation and depuration kinetics of 134Cs were investigated in the Manila clam (Ruditapes philippinarum) under controlled laboratory conditions. The concentration factor was found to be 3.0 for 134Cs in the whole body; however, the concentration factor in the soft part of the clams (12) was significantly higher than those in the whole body and shell (0.80). The depuration kinetics of the radionuclide were described by a two-component exponential model for the whole body. The biological half-lives in the fast and slow components were found to be 0.63 and 22.1 days, respectively. The depuration kinetics for 134Cs in the soft parts were described by a single-component exponential model with a resultant the biological half-life of 18.0 days. 相似文献
The host–guest complex of a proline–thiourea bipyridine trifluoromethanesulfonic acid salt can catalyze organocatalytic asymmetric reactions such as aldol, Michael, and Mannich in polar protic medium with high stereoselectivities. The privileged bipyridine backbone and the thiourea motif are essential to the activity and enantioselectivity through hydrogen bonding interactions. 相似文献
A laser induced breakdown spectrometry hyphenated with on-line continuous flow hydride generation sample introduction system, HG-LIBS, has been used for the determination of arsenic, antimony, lead and germanium in aqueous environments. Optimum chemical and instrumental parameters governing chemical hydride generation, laser plasma formation and detection were investigated for each element under argon and nitrogen atmosphere. Arsenic, antimony and germanium have presented strong enhancement in signal strength under argon atmosphere while lead has shown no sensitivity to ambient gas type. Detection limits of 1.1 mg L−1, 1.0 mg L−1, 1.3 mg L−1 and 0.2 mg L−1 were obtained for As, Sb, Pb and Ge, respectively. Up to 77 times enhancement in detection limit of Pb were obtained, compared to the result obtained from the direct analysis of liquids by LIBS. Applicability of the technique to real water samples was tested through spiking experiments and recoveries higher than 80% were obtained. Results demonstrate that, HG-LIBS approach is suitable for quantitative analysis of toxic elements and sufficiently fast for real time continuous monitoring in aqueous environments. 相似文献
In this work, bacterial cellulose nanofibers were produced by using the Gluconacetobacter hansenii HE1 strain. These nanofibers were derivatized with dye affinity ligand Reactive Green 5, and these newly synthesized dye-attached nanofibers were used for affinity adsorption of urease. Reactive Green 5-attached nanofibers were characterized by Fourier transform infrared spectroscopy, SEM, and energy-dispersive x-ray spectroscopy analysis. Some adsorption conditions which significantly affect the adsorption efficiency were investigated. The maximum urease adsorption capacity was found to be 240 mg/g nanofiber in pH 6.0 and at room temperature. Dye-free plain nanofibers also used for studying nonspecific urease adsorption onto plain nanofibers and nonspecific adsorption were found to be negligible (3.5 mg/g nanofiber). Prepared dye-attached nanofibers can be used in five successive adsorption/desorption steps without any decrease in their urease adsorption capacity. The desorption rate of the adsorbed urease was found to be 98.9 %. The activity of the urease was also investigated, and it was found that free and desorbed urease from the dye-attached nanofibers showed similar specific activity. 相似文献
Three-phase partitioning (TPP) was used to purify and recover catalase from potato crude extract. The method consists of ammonium sulfate saturation, t-butanol addition, and adjustment of pH, respectively. The best catalase recovery (262 %) and 14.1-fold purification were seen in the interfacial phase in the presence of 40 % (w/v) ammonium sulfate saturation with 1.0:1.0 crude extract/t-butanol ratio (v/v) at pH 7 in a single step. The sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) analysis of the enzyme showed comparatively purification and protein molecular weight was nearly found to be 56 kDa. This study shows that TPP is a simple, economical, and quick method for the recovering of catalase and can be used for the purification process. 相似文献
Investigation of pre-equilibrium (PEQ) and equilibrium (EQ) effects on proton induced reactions for production of radioisotopes are very important. Therefore, in this study, we have calculated the PEQ and EQ cross-sections for 67Zn(p,n)67Ga, 68Zn(p,2n)67Ga, 82Kr(p,2n)81Rb, 111Cd(p,n)111In, 112Cd(p,2n)111In, 123Te(p,n)123I, 124Te(p,2n)123I, 124Te(p,n)124I and 124Xe(p,2n)123Cs reactions for production diagnostic radioisotopes. Calculations have been performed by using the hybrid model, geometry dependent hybrid model and full exciton model of PEQ reaction mechanism with 1–40 MeV proton incident energy. We have also investigated the EQ effects on these reactions using the Weisskopf–Ewing model in the same energy range. The excitation functions including the PEQ and EQ effects on these reactions are evaluated by using the ALICE/ASH (2006) and the TALYS 1.4 (2011) codes. Our results have shown that using these codes is suitable for production diagnostic isotopes mentioned above. To obtain excitation functions for producing the diagnostic radioisotopes the PEQ mechanism has been found more dominant than that of the EQ. The results are discussed and compared with the available experimental data. 相似文献
The alterations of organic acids citrate, α-ketoglutarate, succinate, fumarate, malate production together with isocitrate
lyase activity as a glyoxalate shunt enzyme, and antibiotic production of Streptomyces sp M4018 were investigated in relation to changes in the glucose, glycerol and starch concentrations (5–20 g/L) after identification
as a strain of Streptomyces hiroshimensis based on phenotypic and genotypic characteristics. The highest intracellular citrate and α-ketoglutarate levels in 20 g/l
of glucose, glycerol, and starch mediums were 399.47 ± 4.78, 426.93 ± 6.40, 355.84 ± 5.38 ppm and 444.81 ± 5.12, 192.96 ± 2.26,
115.20 ± 2.87 ppm, respectively. The highest succinate, malate, and fumarate levels were also determined in 20 g/l of glucose
medium as 548.9 ± 11.21, 596.15 ± 8.26, and 406.42 ± 6.59 ppm and the levels were significantly higher than the levels in
glycerol and starch. Extracellular organic acid levels measured also showed significant correlation with carbon source concentrations
by showing negative correlation with pH levels of the growth medium. The antibiotic production of Streptomyces sp. M4018 was also higher in glucose medium as was the case also for organic acids when compared with glycerol. On the other
hand, there is no production in starch. 相似文献
In this work, 4-diethanolaminomethyl styrene (DEAMSt) monomer was prepared by modification of 4-chloromethyl styrene with diethanolamine. The homopolymerization of styrene modificated was carried out by free radical polymerization method at 60?°C in presence of 1,4-dioxane and AIBN. The metal complexes were prepared by reaction of the homopolymer used as ligand P(DEAMSt)Ll and Ni(II), Co(II) metal ions in presence of ethanol and dilute NaOH at 65?°C for 48?h in pH 6.
The structure of modificated monomer, homopolymer used as ligand and polymer-metal complexes were characterized by (FT-IR), 1H-NMR, 13C-NMR, Raman spectroscopy tecniques, elemental analysis, SEM, XRD and magnetic measurements. Their geometric structures according to magnetic measurements of Co(II) and Ni(II) complexes were estimated that have a tetrahedral structure. P(DEAMSt)Ll polymer has a transition state between amorphous and crystalline, whereas metal complexes (Co(II) and Ni(II) are with a large crystal structure. The molecular weight of P(DEAMSt)L1 homopolymer was determined by gel permeation chromatography (GPC). The glass transition temperature (Tg) of homopolymer was measured by differantial scanning calorimeter (DSC). The thermal behaviors of both ligand and polymer-metal complexes were investigated by thermogravimetric analysis (TGA) and (DTA). The results obtained were compared with each other. Then, the dielectrical measurements (dielectric constant, dielectric loss and conductivity) of the ligand and polymer-metal complexes were investigated as a function of temperature and frequency. The activation energies (Ea) of the ligand and metal complexes were determined from the conductivity measurements. 相似文献
Phytochemical investigations on the EtOH extract of Clematis viticella led to the isolation of six flavonoid glycosides, isoorientin (1), isoorientin 3′-O-methyl ether (2), quercetin 7-O-α-L-rhamnopyranoside (3), quercetin 3,7-di-O-α-L-rhamnopyranoside (4), manghaslin (5) and chrysoeriol 7-O-β-D-glucopyranoside (6), one phenylethanol derivative, hydroxytyrosol (7), along with three phenolic acids, caffeic acid (8), (E)-p-coumaric acid (9) and p-hydroxybenzoic acid (10). The structures of the isolates were elucidated on the basis of NMR and HR-MS data. All compounds were isolated from C. viticella for the first time. Compounds 7 and 8 showed significant anti-inflammatory activity at 100 μM by reducing the release of NO in LPS-stimulated macrophages comparable to positive control indomethacin. Compounds 3 and 7 exhibited anti-inflammatory activity through lowering the levels of TNF-α while 1, 3 and 5 decreased the levels of neopterin better than the positive controls. 相似文献
In recent years, the use of organic polymer monolithic capillary columns in separation science has gained popularity due to the fact that they are easy to fabricate and do not require retaining frits. These materials have been applied in different fields including foods, proteomics, and pharmaceuticals. The interest in food analysis still needs to develop in order to increase the sensitivity towards micro/nano‐scale food applications for food samples of < 5 μg (e.g., foodomics). In this regard, polymer monolithic capillary columns offer great separation capability in the food analytical separation science. We review the most important applications in food analysis using polymer monolithic capillary columns. In addition, several examples of the use of capillary separation methods combined with mass spectrometry detection in food analysis are summarized. 相似文献