首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2152篇
  免费   63篇
  国内免费   10篇
化学   1584篇
晶体学   21篇
力学   50篇
数学   196篇
物理学   374篇
  2023年   12篇
  2022年   42篇
  2021年   53篇
  2020年   44篇
  2019年   49篇
  2018年   22篇
  2017年   22篇
  2016年   64篇
  2015年   47篇
  2014年   74篇
  2013年   109篇
  2012年   114篇
  2011年   144篇
  2010年   87篇
  2009年   81篇
  2008年   118篇
  2007年   119篇
  2006年   121篇
  2005年   116篇
  2004年   90篇
  2003年   72篇
  2002年   78篇
  2001年   43篇
  2000年   36篇
  1999年   20篇
  1998年   21篇
  1997年   26篇
  1996年   27篇
  1995年   12篇
  1994年   20篇
  1993年   11篇
  1992年   23篇
  1991年   11篇
  1990年   14篇
  1989年   13篇
  1988年   12篇
  1987年   11篇
  1986年   17篇
  1985年   20篇
  1984年   19篇
  1983年   11篇
  1981年   12篇
  1980年   14篇
  1979年   9篇
  1977年   9篇
  1976年   10篇
  1973年   10篇
  1965年   8篇
  1934年   9篇
  1933年   6篇
排序方式: 共有2225条查询结果,搜索用时 0 毫秒
81.
The trityl group is an important and useful protecting group for primary hydroxy groups on carbohydrates. However, during deprotection, neighboring acetyl groups can easily migrate to the deprotected hydroxy groups. Hence, deprotection of trityl groups was optimized using a microreactor with regard to flow rate, reagent concentration, reaction time, and substrate concentration. The optimized microflow reaction conditions inhibited migration and could be applied to large-scale reactions and other substrates.  相似文献   
82.
The idea of quality by design (QbD) has been proposed in pharmaceutical field. QbD is a systematic approach to control the product performance based on the scientific understanding of the product quality and its manufacturing process. In the present study, near-infrared (NIR) imaging is utilized as a tool to achieve this concept. A practical use of a chemometrics technique called self-modeling curve resolution (SMCR) is demonstrated with NIR imaging analysis of pharmaceutical tablets containing two ingredients, a soluble active ingredient, pentoxifylline (PTX), and an insoluble excipient, palmitic acid. Concentration profiles obtained by SMCR reveal that the homogenous distribution of chemical ingredients strongly depends on the grinding time and that its process plays a central role in quantitative control, say sustained-release of PTX. In addition, pure component spectra by SMCR indicate a sequential change of specific NIR peak intensities following the increase of the grinding time. The spectra change shows a molecular structure change related to its crystallinity during grinding process. Accordingly, this study clearly demonstrates that NIR imaging combined with SMCR can be a powerful tool to reveal chemical or physical mechanism induced by the manufacturing process of pharmaceutical products and that it may be a solid solution for QbD of pharmaceutical products.  相似文献   
83.
Giant liposomes, or giant vesicles, are cell-size (approximately 5-100 microm) compartments enclosed with phospholipid bilayers, and have often been used in biological research. They are usually generated using hydration methods, "electroformation" and "gentle hydration (or natural swelling)", in which dry lamellar films of phospholipids are hydrated with aqueous solutions. In gentle hydration, however, giant liposomes are difficult to prepare from an electrostatically neutral phospholipid because lipid lamellae cannot repel each other. In this study, we demonstrate the efficient formation of giant liposomes using the gentle hydration of neutral phospholipid (dioleoyl phosphatidylcholine, DOPC) dry films doped with nonelectrolytic monosaccharides (glucose, mannose, and fructose). A mixture of DOPC and such a sugar in an organic solvent (chloroform/methanol) was evaporated to form the films, which were then hydrated with distilled water or Tris buffers containing sodium chloride. Under these conditions, giant liposomes spontaneously formed rapidly and assumed a swollen cell-sized spherical shape with low lamellarity, whereas giant liposomes from pure DOPC films had multilamellar lipid layers, miscellaneous shapes and smaller sizes. This observation indicates that giant unilamellar vesicles (GUVs) of DOPC can be obtained efficiently through the gentle hydration of sugar-containing lipid dry films because repulsion between lipid lamellae is enhanced by the osmosis induced by dissolved sugar.  相似文献   
84.
The all silica DDR membrane turns out to be well suited to separate water from organic solvents under pervaporation conditions, despite its hydrophobic character. All-silica zeolites are chemically and hydrothermally more stable than aluminum containing ones and are therefore preferred for membrane applications, including for dehydration, even though these type of membranes are hydrophobic. Permeation of water, ethanol and methanol through an all-silica DDR membrane has been measured at temperatures ranging from 344 to 398 K. The hydrophobic membrane shows high water fluxes (up to 20 kg m−2 h−1). The pure water permeance is insensitive to temperature and is well described assuming weak adsorption. Excellent performance in dewatering ethanol (N=2N=2 kg m−2 h−1and αw=1500αw=1500 at 373 K and xw=0.18xw=0.18) is observed and the membrane is also able to selectively remove water from methanol (N=5N=5 kg m−2 h−1 and αw=9αw=9). Water could also be removed from methanol/ethanol/water (αwater/EtOH=1500αwater/EtOH=1500, αMeOH/EtOH=70αMeOH/EtOH=70 at 373 K) mixtures, even at water feed concentrations below 1.5 mol%.  相似文献   
85.
The interstellar candidate phosphorus mononitride PN, a metastable species, was generated through high-vacuum flash pyrolysis of (o-phenyldioxyl)phosphinoazide in cryogenic matrices. Although the PN stretching band was not directly detected because of its low infrared intensity and possible overlaps with other strong bands, o-benzoquinone, carbon monoxide, and cyclopentadienone as additional fragmentation products were clearly identified. Moreover, an elusive o-benzoquinone-PN complex formed when (o-phenyldioxyl)phosphinoazide was exposed to UV irradiation at λ=254 nm. Its recombination to (o-phenyldioxyl)-λ5-phosphinonitrile was observed upon irradiation with the light at λ=523 nm, which demonstrates for the first time the reactivity of PN towards an organic molecule. Energy profile computations at the B3LYP/def2-TZVP density functional theory level reveal a concerted mechanism. To provide further evidence, UV/Vis spectra of the precursor and the irradiation products were recorded and agree well with time-dependent DFT computations.  相似文献   
86.
Essential oils (EOs) and hydrolates (Hds) are natural sources of biologically active ingredients with broad applications in the cosmetic industry. In this study, nationally produced (mainland Portugal and Azores archipelago) EOs (11) and Hds (7) obtained from forest logging and thinning of Eucalyptus globulus, Pinus pinaster, Pinus pinea and Cryptomeria japonica, were chemically evaluated, and their bioactivity and sensorial properties were assessed. EOs and Hd volatiles (HdVs) were analyzed by GC-FID and GC-MS. 1,8-Cineole was dominant in E. globulus EOs and HdVs, and α- and β-pinene in P. pinaster EOs. Limonene and α-pinene led in P. pinea and C. japonica EOs, respectively. P. pinaster and C. japonica HVs were dominated by α-terpineol and terpinen-4-ol, respectively. The antioxidant activity was determined by DPPH, ORAC and ROS. C. japonica EO showed the highest antioxidant activity, whereas one of the E. globulus EOs showed the lowest. Antimicrobial activity results revealed different levels of efficacy for Eucalyptus and Pinus EOs while C. japonica EO showed no antimicrobial activity against the selected strains. The perception and applicability of emulsions with 0.5% of EOs were evaluated through an in vivo sensory study. C. japonica emulsion, which has a fresh and earthy odour, was chosen as the most pleasant fragrance (60%), followed by P. pinea emulsion (53%). In summary, some of the studied EOs and Hds showed antioxidant and antimicrobial activities and they are possible candidates to address the consumers demand for more sustainable and responsibly sourced ingredients.  相似文献   
87.
88.
89.
Various amounts of n-alkylbenzenes (Cn: C6H5-CnH2n+1 (n = 3-16)) were doped into poly(methyl methacrylate) (PMMA) films, and the emission and thermal properties of each film were measured in detail together with their solid-state 13C NMR spectra. The aim of the present work was to estimate the size distribution of free volume in amorphous regions of polymer solids heavily doped with plasticizers by using Cn as models of a plasticizer. The excimer fluorescence yields of Cn in PMMA were found to depend on both the amount of Cn and the length of the alkyl chains of Cn, although the fluorescence spectra of all of the Cns in dilute fluid solution were almost the same. The quantitative analysis showed: (1) Cn with n ? 12 induces a phase separation in PMMA, in which almost all of the Cn molecules are in a separated phase, and thus they cannot penetrate regions in which PMMA chains are aggregated. This means that Cn with n ? 12 cannot enlarge the space between PMMA chains. (2) Smaller Cn (n < 11) can enter free volumes between PMMA chains that correspond to their molecular size, but they can enlarge them only to a limited extent. Thus, the amount by which plasticization can increase the free volume of PMMA is limited by the size of the dopant and the inherent free volume of the polymer matrix. (3) The efficiency of excimer formation was found to reveal the maximum amount of Cn that could fit in the free volume of PMMA. Thus our fluorescence measurements showed that PMMA solids that were plasticized to their limit had a free volume that was larger than the volume occupied by all the conformers of C5 and smaller than the volume occupied by almost all the conformers of C12. In conclusion, we were able to obtain information on plasticization and to demonstrate a method of monitoring microenvironments in polymer solids after they have been doped with plasticizers.  相似文献   
90.
In micellar solutions, one-electron reduction of (*)O 2 (-) radical-anions by 3-alkylpolyhydroxyflavones (FnH) with alkyl chains of n = 1, 4, 6, 10 carbons produces phenoxyl radicals ( (*)Fn) identical to those obtained by one-electron oxidation by (*)Br 2 (-) radical-anions or by repair of tryptophan radicals. In cetyltrimethylammonium bromide (CTAB), F1H localizes in the Stern layer, and alkyl chains of other FnH solubilize in the hydrophobic interior, interacting with cetyl tails. This interaction produces more compact micelles with lower intramicellar fluidity, as suggested by the increase in the pseudo-first-order rate constant of (*)Fn formation ( k 1) from approximately 390 s (-1) for n = 1 to 610 s (-1) for n = 10, leading to an intramicellar bimolecular rate constant of 1 x 10 (5) M (-1) s (-1). Additionally, (*)F1 and (*)F4 decay by intermicellar bimolecular reaction (2 k = 20 and 2 x 10 (5) M (-1) s (-1), respectively) whereas other (*)Fn radicals are stable over seconds due to increased localization with regards to the Stern layer. In contrast, the thick uncharged hydrophilic palisade layer and the compact hydrophobic core of Triton X100 micelles are responsible for a much higher microviscosity resulting in a decrease in k 1 from approximately 15.6 s (-1) for n = 1 to 9.6 s (-1) for n = 10.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号