首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   5篇
  国内免费   2篇
化学   61篇
数学   11篇
物理学   6篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   4篇
  2016年   5篇
  2015年   2篇
  2014年   2篇
  2013年   5篇
  2012年   7篇
  2011年   5篇
  2010年   4篇
  2009年   6篇
  2008年   8篇
  2007年   4篇
  2006年   6篇
  2004年   2篇
  2003年   5篇
  2002年   2篇
  2000年   1篇
排序方式: 共有78条查询结果,搜索用时 31 毫秒
61.
1,3-Dimethylimidazolium-2-carboxylate and -4-carboxylate (norzooanemonine), which belong to two distinct classes of heterocyclic mesomeric betaines, undergo thermal decarboxylations to the N-heterocyclic carbenes imidazol-2-ylidene and imidazol-4-ylidene, respectively. These carbenes can be detected by ESI mass spectrometry and can be trapped by isocyanates to imidazolium-amidates, the structure of which was proved by independent syntheses. We performed calculations to characterize the different types of conjugation in the imidazolium-carboxylates.  相似文献   
62.
The anionic iota carrageenan polysaccharide is enriched with FeII and FeIII by ion exchange against FeSO4 and FeCl3. With divalent iron, portions of polymer chains undergo a secondary structure transition from random coils to single helices. The single‐chain macromolecular conformations can be manipulated by an external magnetic field: upon exposure to 1.1 T, the helical portions exhibit 1.5‐fold stiffening and 1.1‐fold stretching, whereas the coil conformations respond much less as a result of lower contents of condensed iron ions. Along with the coil–helix transition, the trivalent iron triggers the formation of superstructures. The applicability of iron‐enriched iota carrageenan as functional ingredient for food fortification is tested by free Fe2+ and Fe3+ contents, respectively, with the most promising iota‐FeIII yielding 53 % of bound iron, which is due to the superstructures, where the ferric ions are chelated by the supramolecularly self‐assembled polymer host.  相似文献   
63.
64.
Annals of the Institute of Statistical Mathematics - In this paper, we introduce a new smooth estimator for continuous distribution functions on the positive real half-line using...  相似文献   
65.
Respiring mitochondria establish a proton gradient across the mitochondrial inner membrane (MIM) that is used to generate ATP. Protein-independent mitochondrial uncouplers collapse the proton gradient and disrupt ATP production by shuttling protons back across the MIM in a protonophoric cycle. Continued cycling relies on the formation of MIM-permeable anionic species that can return to the intermembrane space after deprotonation in the mitochondrial matrix. Previously described protonophores contain acidic groups that are part of delocalised π-systems that provide large surfaces for charge delocalisation and facilitate anion permeation across the MIM. Here we present a new class of protonophoric uncoupler based on aryl-urea substituted fatty acids in which an acidic group and a π-system are separated by a long alkyl chain. The aryl-urea group in these molecules acts as a synthetic anion receptor that forms intermolecular hydrogen bonds with the fatty acid carboxylate after deprotonation. Dispersal of the negative charge across the aryl-urea system produces lipophilic dimeric complexes that can permeate the MIM and facilitate repeated cycling. Substitution of the aryl-urea group with lipophilic electron withdrawing groups is critical to complex lipophilicity and uncoupling activity. The aryl-urea substituted fatty acids represent the first biological example of mitochondrial uncoupling mediated by the interaction of a fatty acid and an anion receptor moiety, via self-assembly.

A new mitochondrial uncoupler that forms membrane permeable dimers through interactions of remote acidic and anion receptor groups.  相似文献   
66.
A novel analytical workflow was developed and applied for the detection and identification of unknown xenobiotics in biological samples. High-resolution mass spectrometry (HRMS)-based data-independent MSE acquisition was employed to record full scan MS and fragment spectral datasets of test and control samples. Then, an untargeted data-mining technique, background subtraction, was utilized to find xenobiotics present only in test samples. Structural elucidation of the detected xenobiotics was accomplished by database search, spectral interpretation, and/or comparison with reference standards. Application of the workflow to analysis of unknown xenobiotics in plasma samples collected from four poisoned patients led to generation of xenobiotic profiles, which were regarded as xenobiotic fingerprints of the individual samples. Among 19 xenobiotics detected, 11 xenobiotics existed in a majority of the patients' plasma samples, thus were considered as potential toxins. The follow-up database search led to the tentative identification of azithromycin (X5), α-chaconine (X9) and penfluridol (X12). The identity of X12 was further confirmed with its reference standard. In addition, one xenobiotic component (Y5) was tentatively identified as a penfluridol metabolite. The remaining unidentified xenobiotics listed in the xenobiotic fingerprints can be further characterized or identified in retrospective analyses after their spectral data and/or reference compounds are available. This HRMS-based workflow may have broad applications in the detection and identification of unknown xenobiotics in individual biological samples, such as forensic and toxicological analysis and sport enhancement drug screening.  相似文献   
67.
Agricultural production is influenced by the water content in the soil and availability of fertilizers. Thus, superabsorbent hydrogels, based on polyacrylamide, natural cashew tree gum (CG) and potassium hydrogen phosphate (PHP), as fertilizer and water releaser were developed. The structure, morphology, thermal stability and chemical composition of samples of polyacrylamide and cashew tree gum hydrogels with the presence of fertilizer (HCGP) and without fertilizer (HCG) were investigated, using X-ray diffractometry (XRD), Fourier Transformed Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Thermogravimetric Analysis (TGA/DTG) and Energy Dispersive Spectroscopy (EDS). Swelling/reswelling tests, textural analysis, effect of pH, release of nutrients and kinetics were determined; the ecotoxicity of the hydrogels was investigated by the Artemia salina test. The results showed that PHP incorporation in the hydrogel favored the crosslinking of chains. This increased the thermal stability in HCGP but decreased the hardness and adhesion properties. The HCGP demonstrated good swelling capacity (~15,000 times) and an excellent potential for reuse after fifty-five consecutive cycles. The swelling was favored in an alkaline pH due to the ionization of hydrophilic groups. The sustained release of phosphorus in HCGP was described by the Korsmeyer–Peppas model, and Fickian diffusion is the main fertilizer release mechanism. Finally, the hydrogels do not demonstrate toxicity, and HCGP has potential for application in agriculture.  相似文献   
68.
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号