首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5172篇
  免费   123篇
  国内免费   31篇
化学   4044篇
晶体学   30篇
力学   117篇
数学   595篇
物理学   540篇
  2023年   16篇
  2022年   43篇
  2021年   54篇
  2020年   64篇
  2019年   89篇
  2018年   50篇
  2017年   43篇
  2016年   107篇
  2015年   97篇
  2014年   102篇
  2013年   203篇
  2012年   281篇
  2011年   368篇
  2010年   182篇
  2009年   160篇
  2008年   336篇
  2007年   332篇
  2006年   326篇
  2005年   331篇
  2004年   291篇
  2003年   225篇
  2002年   244篇
  2001年   80篇
  2000年   82篇
  1999年   61篇
  1998年   65篇
  1997年   71篇
  1996年   117篇
  1995年   61篇
  1994年   53篇
  1993年   55篇
  1992年   60篇
  1991年   48篇
  1990年   34篇
  1989年   31篇
  1988年   30篇
  1987年   33篇
  1986年   20篇
  1985年   46篇
  1984年   54篇
  1983年   30篇
  1982年   41篇
  1981年   44篇
  1980年   42篇
  1979年   30篇
  1978年   44篇
  1977年   21篇
  1976年   27篇
  1975年   30篇
  1974年   17篇
排序方式: 共有5326条查询结果,搜索用时 32 毫秒
131.
132.
Several 2‐alkylquinolizinium‐1‐olates 9 , i.e., heterobetaines, were prepared from ketone 11 , the latter being readily available either from pyridine‐2‐carbaldehyde via a Grignard reaction, followed by oxidation with MnO2, or from 2‐picolinic acid (=pyridine‐2‐carboxylic acid) via the corresponding Weinreb amide and subsequent Grignard reaction. Mesoionic heterobetaines such as quinolizinium derivatives have the potential to undergo cycloaddition reactions with double and triple bonds, e.g., 1,3‐dipolar cycloadditions or Diels? Alder reactions. We here report on the scope and limitations of cycloaddition reactions of 2‐alkylquinolizinium‐1‐olates 9 with electron‐poor acetylene derivatives. As main products of the reaction, 5‐oxopyrrolo[2,1,5‐de]quinolizines (=‘[2.3.3]cyclazin‐5‐ones’) 19 were formed via a regioselective [2+3] cycloaddition, and cyclohexadienone derivatives, formed via a Diels? Alder reaction, were obtained as side products. The structures of 2‐benzylquinolizinium‐1‐olate ( 9a ) and two ‘[2.3.3]cyclazin‐5‐ones’ 19i and 19l were established by X‐ray crystallography.  相似文献   
133.
The hydrogen evolution reaction (HER) is a fundamental process in electrocatalysis and plays an important role in energy conversion for the development of hydrogen‐based energy sources. However, the considerably slow rate of the HER in alkaline conditions has hindered advances in water splitting techniques for high‐purity hydrogen production. Differing from well documented acidic HER, the mechanistic aspects of alkaline HER are yet to be settled. A critical appraisal of alkaline HER electrocatalysis is presented, with a special emphasis on the connection between fundamental surface electrochemistry on single‐crystal models and the derived molecular design principle for real‐world electrocatalysts. By presenting some typical examples across theoretical calculations, surface characterization, and electrochemical experiments, we try to address some key ongoing debates to deliver a better understanding of alkaline HER at the atomic level.  相似文献   
134.
135.
The title compound, C17H14O4, is an unprecedented new synthetic isoaurone‐type enol ether that has the E configuration. The planar furanone ring is fused to a methoxy­benzene ring system, with an interplanar angle of 175.7 (1)°. Due to this ring fusion, the six‐membered ring has a significant amount of ring strain, as shown by the internal ring angle range of 115.8 (1)–124.7 (1)°, whereas the vinylic phenyl ring has internal angles between 119.7 (1) and 120.2 (1)°. The mol­ecules form infinite hydrogen‐bonding layers along the b direction of the form C—H?O, where the keto O atom acts as a bifurcated acceptor. These layers are connected along the c direction by another hydrogen bond with a methoxy H atom as donor. In addition to this connection, the layers are stacked via centres of symmetry by a pair of symmetry‐related benzo­furan­one ring systems.  相似文献   
136.
Following hemorrhage-causing injury, lactate levels rise and correlate with the severity of injury and are a surrogate of oxygen debt. Posttraumatic injury also includes hyperglycemia, with continuously elevated glucose levels leading to extensive tissue damage, septicemia, and multiple organ dysfunction syndrome. A temporary, implantable, integrated glucose and lactate biosensor and communications biochip for physiological status monitoring during hemorrhage and for intensive care unit stays has been developed. The dual responsive, amperometric biotransducer uses the microdisc electrode array format upon which were separately immobilized glucose oxidase and lactate oxidase within biorecognition layers, 1.0–5.0 μm thick, of 3 mol% tetraethyleneglycol diacrylate cross-linked p(HEMA-co-PEGMA-co-HMMA-co-SPA)-p(Py-co-PyBA) electroconductive hydrogels. The device was then coated with a bioactive hydrogel layer containing phosphoryl choline and polyethylene glycol pendant moieties [p(HEMA-co-PEGMA-co-HMMA-co-MPC)] for indwelling biocompatibility. In vitro cell proliferation and viability studies confirmed both polymers to be non-cytotoxic; however, PPy-based electroconductive hydrogels showed greater RMS 13 and PC12 proliferation compared to controls. The glucose and lactate biotransducers exhibited linear dynamic ranges of 0.10–13.0 mM glucose and 1.0–7.0 mM and response times (t 95) of 50 and 35–40 s, respectively. Operational stability gave 80% of the initial biosensor response after 5 days of continuous operation at 37 °C. Preliminary in vivo studies in a Sprague–Dawley hemorrhage model showed tissue lactate levels to rise more rapidly than systematic lactate. The potential for an implantable biochip that supports telemetric reporting of intramuscular lactate and glucose levels allows the refinement of resuscitation approaches for civilian and combat trauma victims.  相似文献   
137.
138.
人体呼出气中内源性颗粒物和外源性颗粒物的粒径和化学成分信息可为肺部疾病诊断、环境暴露评价等研究提供参考。该文初步考察了单颗粒气溶胶质谱(Single particle aerosol mass spectrometry,SPAMS)同时获取人体呼出气中颗粒物(Exhaled breath particles,EBPs)粒径分布和化学成分的可行性。结果表明,健康成人的EBPs数浓度为227~1 043个/L,获取具有统计意义的粒径分布所需的EBPs检出限为2 500个颗粒物,粒径范围为200~1 000 nm,峰值出现在460 nm。与环境空气颗粒物的粒径分布相比,EBPs更多分布在200~300 nm和440~660 nm,从化学成分来看,这两段粒径范围内的EBPs含有更多的碳元素,不易在体内发生吸湿增长,提高了被呼出的概率。EBPs的化学成分可能反映内源性颗粒物和外源性颗粒物组成,如HSO_4~-、PO_3~-、CN~-、CNO~-和C_xH_yO_z~+(x=1~3,y=1~7,z=1~3)可能与内源性颗粒物中的蛋白含量、磷酸酯酰甘油等成分有关,碳簇峰C_3~-、C_4~-、C~+、C_3~+、C_3H~+和C_4~+推测与外源性颗粒物中的碳元素有关。  相似文献   
139.

Background

Stilbene cleaving oxygenases (SCOs), also known as lignostilbene-α,β-dioxygenases (LSDs) mediate the oxidative cleavage of the olefinic double bonds of lignin-derived intermediate phenolic stilbenes, yielding small modified benzaldehyde compounds. SCOs represent one branch of the larger carotenoid cleavage oxygenases family. Here, we describe the structural and functional characterization of an SCO-like enzyme from the soil-born, bio-control agent Pseudomonas brassicacearum.

Methods

In vitro and in vivo assays relying on visual inspection, spectrophotometric quantification, as well as liquid-chormatographic and mass spectrometric characterization were applied for functional evaluation of the enzyme. X-ray crystallographic analyses and in silico modeling were applied for structural investigations.

Results

In vitro assays demonstrated preferential cleavage of resveratrol, while in vivo analyses detected putative cleavage of the straight chain carotenoid, lycopene. A high-resolution structure containing the seven-bladed β-propeller fold and conserved 4-His-Fe unit at the catalytic site, was obtained. Comparative structural alignments, as well as in silico modelling and docking, highlight potential molecular factors contributing to both the primary in vitro activity against resveratrol, as well as the putative subsidiary activities against carotenoids in vivo, for future validation.

Conclusions

The findings reported here provide validation of the SCO structure, and highlight enigmatic points with respect to the potential effect of the enzyme’s molecular environment on substrate specificities for future investigation.
  相似文献   
140.
A large German research consortium mainly within the Max Planck Society (“MaxSynBio”) was formed to investigate living systems from a fundamental perspective. The research program of MaxSynBio relies solely on the bottom‐up approach to synthetic biology. MaxSynBio focuses on the detailed analysis and understanding of essential processes of life through modular reconstitution in minimal synthetic systems. The ultimate goal is to construct a basic living unit entirely from non‐living components. The fundamental insights gained from the activities in MaxSynBio could eventually be utilized for establishing a new generation of biotechnological processes, which would be based on synthetic cell constructs that replace the natural cells currently used in conventional biotechnology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号