首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   2篇
化学   99篇
力学   2篇
数学   12篇
物理学   6篇
  2023年   2篇
  2022年   4篇
  2021年   2篇
  2020年   5篇
  2019年   6篇
  2018年   2篇
  2017年   1篇
  2016年   3篇
  2015年   1篇
  2014年   3篇
  2013年   5篇
  2012年   5篇
  2011年   2篇
  2010年   2篇
  2009年   5篇
  2008年   9篇
  2007年   9篇
  2006年   11篇
  2005年   3篇
  2004年   4篇
  2003年   5篇
  2002年   3篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1996年   2篇
  1995年   2篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1981年   1篇
  1916年   2篇
排序方式: 共有119条查询结果,搜索用时 15 毫秒
101.
We report on a novel approach to integrate colloidal anatase TiO(2) nanorods as key functional components into polymer bulk heterojunction (BHJ) photovoltaic devices by means of mild, all-solution-based processing techniques. The successful integration of colloidal nanoparticles in organic solar cells relies on the ability to remove the long chain insulating ligands, which indeed severely reduces the charge transport. To this aim we have exploited the concomitant mechanisms of UV-light-driven photocatalytic removal of adsorbed capping ligands and hydrophilicization of TiO(2) surfaces in both solid-state and liquid-phase conditions. We have demonstrated the successful integration of the UV-irradiated films and colloidal solutions of TiO(2) nanorods in inverted and conventional solar cell geometries, respectively. The inverted devices show a power conversion efficiency of 2.3% that is a ca. three times improvement over their corresponding cell counterparts incorporating untreated TiO(2), demonstrating the excellent electron-collecting property of the UV-irradiated TiO(2) films. The integration of UV-treated TiO(2) solutions in conventional devices results in doubled power conversion efficiency for the thinner active layer and in maximum power conversion efficiency of 2.8% for 110 nm thick devices. In addition, we have demonstrated, with the support of device characterizations and optical simulations, that the TiO(2) nanocrystal buffer layer acts both as electron-transporting/hole-blocking material and optical spacer.  相似文献   
102.
A series of structurally simple pyridine N-oxides have readily been assembled from inexpensive amino acids and tested as organocatalysts in the allylation of aldehydes with allyl(trichloro)silane to afford homoallylic alcohols. (S)-proline-based catalysts afforded the products derived from aromatic aldehydes in fair to good yields and in up to 84% enantiomeric excess (ee). The allylation of heteroaromatic, unsaturated, and aliphatic aldehydes was less satisfactory. By running the reaction in the presence of achiral and chiral additives and structurally different catalysts, we collected some insights into the relationship between the stereochemical outcome and the catalyst's structural features. Even if the ee's obtained are inferior to the best values observed with other catalysts, this work concurs to show that structurally simple pyridine N-oxides can also promote the allylation reaction with satisfactory stereocontrol.  相似文献   
103.
We use accurate thermodynamic derivatives extracted from high-precision measurements of the four volume-fixed diffusion coefficients in ternary solutions of lysozyme chloride in aqueous NaCl, NH4Cl, and KCl at pH 4.5 and 25 degrees C to (a) assess the relative contributions of the common-ion and nonideality effects to the protein chemical potential as a function of salt concentration, (b) compare the behavior of the protein chemical potential for the three salts, which we found to be consistent with the Hofmeister series, and (c) discuss our thermodynamic data in relation to the dependence of the protein solubility on salt concentration. The four diffusion coefficients are reported at 0.6 mM lysozyme chloride and 0.25, 0.5, 0.9, 1.2, and 1.5 M KCl and extend into the protein-supersaturated region. The chemical potential cross-derivatives are extracted from diffusion data using the Onsager reciprocal relation and the equality of molal cross-derivatives of solute chemical potentials. They are compared to those calculated previously from diffusion data for lysozyme in aqueous NaCl and NH4Cl. We estimate the effective charge on the diffusing lysozyme cation at the experimental concentrations. Our diffusion measurements on the three salts allowed us to analyze and interpret the four diffusion coefficients for charged proteins in the presence of 1:1 electrolytes. Our results may provide guidance to the understanding of protein crystallization.  相似文献   
104.
Aminobenzylnaphthols are a class of compounds containing a large aromatic molecular surface which makes them suitable candidates to study the role of C—H…π interactions. We have investigated the effect of methyl or methoxy substituents on the assembling of aromatic units by preparing and determining the crystal structures of (S,S)‐1‐{(4‐methylphenyl)[(1‐phenylethyl)amino]methyl}naphthalen‐2‐ol, C26H25NO, and (S,S)‐1‐{(4‐methoxyphenyl)[(1‐phenylethyl)amino]methyl}naphthalen‐2‐ol, C26H25NO2. The methyl group influenced the overall crystal packing even if the H atoms of the methyl group did not participate directly either in hydrogen bonding or C—H…π interactions. The introduction of the methoxy moiety caused the formation of new hydrogen bonds, in which the O atom of the methoxy group was directly involved. Moreover, the methoxy group promoted the formation of an interesting C—H…π interaction which altered the orientation of an aromatic unit.  相似文献   
105.
Implementing the phytochemical study of the weed Amaranthus retroflexus, four new sesquiterpene glucosides were isolated from the methanolic extract of the plant. The structures of these metabolites are determined on the basis of the mass spectrometry, and 1D and 2D NMR spectroscopies (DQ-COSY, TOCSY, HSQC, HSQC-TOCSY, HMBC, and NOESY). Two compounds are characterized by a new aglycone and differed from the site of glucosylation. The other two compounds are dimeric diastereoisomers.All the glucoside sesquiterpenes were tested on the wild species Taraxacum officinale to evaluate the role of this weed in the habitat and on the seed of A. retroflexus to verify the potential autotoxic effect of the plant.  相似文献   
106.
The synthesis of new organotin compounds of general formula Tip2SnRR′ (Tip = 2,4,6-triisopropylbenzene; R = R′ = CH3 (1); R = R′ = CHCH2 (2); R = CH2Ph, R′ = Br (3); R = R′ = CH2CHCH2 (4)) is described herein. The compounds have been characterized by 1H, 13C, 119Sn NMR, mass spectroscopy and elemental analysis. Characterization by single-crystal X-ray diffraction analysis has been obtained for compounds 2, 3 and 4. The reactivity with ionizing agents has been studied by NMR spectroscopy. Compounds 2 and 4 underwent alkyl abstraction by [(CH3CH2)3Si]+[B(C6F5)4] affording stable cationic species (2a, 4a). For the cationic specie 4a a π-interaction of the benzyl group to the metal centre was recognized by solution NMR studies. A cationic species (3a) was generated from compound 3 using AgSbF6 as ionizing agent. The cationic species (2a, 3a) exhibited moderate activity as initiator in the cationic polymerization of 1,4-butadiene and good activity in the ring opening polymerization (ROP) of propylene oxide and ε-caprolactone.  相似文献   
107.
Understanding protein solubility is important for a rational design of the conditions of protein crystallization. We report measurements of lysozyme solubility in aqueous solutions as a function of NaCl, KCl, and NH4Cl concentrations at 25 degrees C and pH 4.5. Our solubility results are directly compared to preferential-interaction coefficients of these ternary solutions determined in the same experimental conditions by ternary diffusion. This comparison has provided new important insight on the dependence of protein solubility on salt concentration. We remark that the dependence of the preferential-interaction coefficient as a function of salt concentration is substantially shaped by the common-ion effect. This effect plays a crucial role also on the observed behavior of lysozyme solubility. We find that the dependence of solubility on salt type and concentration strongly correlates with the corresponding dependence of the preferential-interaction coefficient. Examination of both preferential-interaction coefficients and second virial coefficients has allowed us to demonstrate that the solubility dependence on salt concentration is substantially affected by the corresponding change of protein chemical potential in the crystalline phase. We propose a simple model for the crystalline phase based on salt partitioning between solution and the hydrated protein crystal. A novel solubility equation is reported that quantitatively explains the observed experimental dependence of protein solubility on salt concentration.  相似文献   
108.
Coupled diffusion is observed in multicomponent liquid mixtures in which strong thermodynamic interactions occur. This phenomenon is described by cross terms in the matrix of multicomponent diffusion coefficients. This paper reports a theoretical analysis on the relative role of thermodynamic factors and Onsager cross-coefficients on cross-diffusion coefficients relevant to ternary mixtures containing macromolecules or colloidal particles in the presence of salting-out conditions. A new model based on frictional coefficients between solvated solutes is reported. This model predicts that the Onsager cross-coefficient is negative and contributes significantly to cross-diffusion coefficients even at infinite dilution for solutes with a large difference in size. These predictions are consistent with recent experimental results. The role of preferential solvation and excluded-volume interactions on the thermodynamic factors are also examined. Excluded-volume interactions are introduced through the use of the McMillan-Mayer thermodynamic framework after emphasizing some important aspects of diffusion reference frames and thermodynamic driving forces. Finally, new expressions for cross-diffusion coefficients are proposed.  相似文献   
109.
Journal of Solution Chemistry - Isothermal mutual diffusion coefficients (interdiffusion coefficients) were measured for K2SO4(aq) at 298.15?±?0.005 K, at numerous...  相似文献   
110.
Phase transitions of protein aqueous solutions are important for protein crystallization and biomaterials science in general. One source of thermodynamic complexity in protein solutions and their phase transitions is the required presence of additives such as polyethylene glycol (PEG). To investigate the effects of PEG on the thermodynamic behavior of protein solutions, we report measurements on the liquid-liquid phase separation (LLPS) of aqueous bovine serum albumin (BSA) in the presence of relatively small amounts of PEG with an average molecular weight of 1450 g/mol (PEG1450) as a model system. We experimentally characterize two thermodynamically independent properties of the phase boundary: (1) the effect of PEG1450 concentration on the LLPS temperature, (2) BSA/PEG1450 partitioning in the two liquid coexisting phases. We then use a thermodynamic perturbation theory to relate the first property to the effect of PEG concentration on protein-protein interactions and the second property to protein-PEG interactions. As criteria to determine the accuracy of a microscopic model, we examine the model's ability to describe both experimental thermodynamic properties. We believe that the parallel examination of these two properties is a valuable tool for verifying the validity of existing models and for developing more accurate ones. For our system, we have found that a depletion-interaction model satisfactorily explains both protein-PEG interactions and the effect of PEG concentration on protein-protein interactions. Finally, due to the general importance of LLPS, we will experimentally show that protein-PEG-buffer mixtures can exhibit two distinct types of liquid-liquid phase transitions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号