首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   0篇
化学   17篇
数学   5篇
物理学   6篇
  2020年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2012年   1篇
  2011年   3篇
  2010年   2篇
  2009年   1篇
  2008年   4篇
  2004年   2篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1993年   1篇
  1985年   1篇
  1984年   2篇
  1979年   1篇
排序方式: 共有28条查询结果,搜索用时 310 毫秒
11.
12.
Statistical techniques, when applied to data obtained by chemical investigations on ancient artworks, are usually expected to recognize groups of objects to classify the archeological finds, to attribute the provenance of items compared with earlier investigated ones, or to determine whether an archaelogical attribution is possible or not. The statistical technique most frequently used in archeometry is the principal component analysis (PCA), because of its simplicity in theory and implementation. However, the application of PCA to archeometric data showed severe limitations because of its linear feature. Indeed, PCA is inadequate to classify data whose behavior describe a curve or a curved subspace of the original data space. As a consequence of it, an amount of information is lost because the multi‐dimensional data space is compressed into a lower‐dimensional subspace including principal components. The aim of this work is then to test a novel statistical technique for archeometry. We propose a nonlinear PCA method to extract maximum chemical information by plotting data on the smallest number of principal components and to answer archeological questions. The higher accuracy and effectiveness of nonlinear PCA approach with respect to standard PCA for the analysis of archeometric data are shown through the study of Apulian red figured pottery (fifth–fourth century BC) coming from some of the most relevant archeological sites of ancient Apulia (Monte Sannace (Gioia del Colle), Egnatia (Fasano), Canosa, Altamura, Conversano, and Arpi(Foggia)). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
13.
Two kilns, one of which collapsed during firing cycle together with its entire pottery load, have been excavated at the Egnazia site in Southern Italy. To understand the reason for the collapse, ‘Broad Line’ typology pottery finds were analysed by complementary analytical techniques. Analytical results not only suggest as cause of collapse sudden overheating in kiln due to uncontrolled increases in temperature, but also indicate a good technological cycle from the recovery of raw materials to the manufacturing and firing process, which tends to disprove the common assumption of non-professional production.  相似文献   
14.
Glazed pottery with “negative decoration” samples, dating back to the twelfth to thirteenth century ad and coming from three sites along the Adriatic coast, Siponto, Egnatia and Trani (Southern Italy) were characterized from physical–chemical, mineralogical and morphological points of view. Optical microscopy, scanning electron microscopy with energy dispersive X-ray spectroscopy, inductively coupled plasma-mass spectroscopy, X-ray diffraction and micro-Raman spectroscopy investigations were carried out on ceramic bodies, pigments and glazes of the fragments. We aimed to outline the technological features, define the nature of decorations and coatings—glazes and engobes—and look for clues to hypothesize provenance. Results obtained show clear differences in raw materials and production technology between the impressed ceramic of Islamic tradition and the incised one of Byzantine tradition. Regarding the latter, evidences of a non-local origin can be found in the compositional diversity of raw materials used for the ceramic bodies of fragments decorated with spiral and pseudo-kufic motifs, which stressed the use of clays so far not recorded in Apulia. At the same time, at least in the case of Siponto, the compositional similarity of both ceramic bodies and materials used under the glaze for impressed ceramic and painted polychrome ceramics (RMR and protomaiolica), more likely local production, could suggest that both were produced in the same workshops.  相似文献   
15.
16.
A multi-analytical approach was used to investigate Roman lead-glazed ceramic artefacts from archaeological excavations at Pompeii and Herculaneum (Italy) aiming at defining the production technology of both glaze and ceramic body, by way of integrated investigations. The chemical, structural, and micro-morphological characterisations were performed using a combination of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), optical microscopy (OM), scanning electron microscopy (SEM), and micro-Raman spectroscopy. Fragments of artefacts (skyphoi, oil lamps, bowls, askoi, amphorae, krateres) of great historical and archaeological interest were sampled. LA-ICP-MS was used to determine the elemental composition by virtue of its effective lateral resolution, its ability to detect most elements and also to analyse comparably small samples. All the archaeological objects were coated with a lead-based glaze produced using a lead oxide-plus-quartz mixture, with sodium/potassium feldspars added as a flux and two different metals used: copper and iron. Two types of ceramic pastes have been identified, but chemometric techniques support the hypothesis of a Campanian provenance for the raw materials. Degradation phenomena such as the partial devitrification of the glaze, i.e. the slow structural reorganisation towards stable crystalline phases, and the leaching by mineral dissolution in the soil, were determined.  相似文献   
17.
The determination of urinary S‐phenylmercapturic acid (S‐PMA) represents the most reliable biomarker to monitor the intake risk of airborne benzene. Recently, the European Chemical Agency deliberated new occupational exposure limits for benzene and recommended an S‐PMA biological limit value of 2‐μg/g creatinine. This limit is an order of magnitude lower than the previous one, and its determination constitutes a challenge in the analytical field. We developed and validated a method that allows the fully automated and sensitive determination of S‐PMA by the use of gas‐chromatography negative chemical ionization tandem mass spectrometry in isotopic dilution. For negative chemical ionization, we selected a mixture of 1% isobutane in argon as reactive gas, by studying its chemical ionization mechanism and optimal parameters compared with pure isobutane or pure methane. This gas mixture produces a more abundant signal of the target analyte than isobutane or methane, and it extended the operative lifetime of the ion source, enabling us to start a high‐throughput approach of the S‐PMA analysis. Moreover, energy‐resolved mass spectrometry experiments were carried out to refine the MS/MS analysis conditions, testing nitrogen and argon as collision gases. The method optimization was pursued by a chemometric model by using the experimental design. The quantification limit for S‐PMA was 0.10 μg/L. Accuracy (between 98.3% and 99.6%) and precision (ranging from 1.6% to 6.4%) were also evaluated. In conclusion, the newly developed assay represents a powerful tool for the robust, reliable, and sensitive quantification of urinary S‐PMA, and because of its automation, it is well suited for application in large environmental and biological monitoring.  相似文献   
18.
Biological agents play an important role in the deterioration of cultural heritage causing aesthetic, biogeophysical and biogeochemical damages. Conservation is based on the use of preventive and remedial methods. The former aims at inhibiting biological attack, and the latter aims at eradicating the biological agents responsible for biodeterioration. Here, we propose the preparation and the analytical characterisation of copper-based nanocoating, capable of acting both as a remedy and to prevent microbial proliferation. Core–shell CuNPs are mixed with a silicon-based product, commonly used as a water-repellent/consolidant, to obtain a combined bioactive system to be applied on stone substrates. The resulting coatings exert a marked biological activity over a long period of time due to the continuous and controlled release of copper ions acting as biocides. To the best of our knowledge, this is the first time that a multifunctional material is proposed, combining the antimicrobial properties of nanostructured coatings with those of the formulations applied to the restoration of stone artworks. A complete characterisation based on a multi-technique analytical approach is presented.  相似文献   
19.
In this report we have studied the extraction of a series of heavy metals ions (Cu2+, Ni2+, Fe3+, Cr3+, CrO4(2-)) from water bulk solutions by means of reverse micelles. The parameters explored are the nature and concentration of the accompanying electrolyte, as well as the surfactant nature and its concentration. The extracted metals can be recovered and eventually concentrated in a new water solution carrying out a back extraction. The extracted amount of metal is strongly dependent on the charge of the metal to be extracted. Therefore the extracted water solution is enriched in higher charge metal. Anions of amphoteric metals, like the chromate ions, can be quantitatively separated from their positive cations, like Cr3+ by properly choosing the cationic or the anionic surfactants. The transfer of the metal is essentially controlled by electrostatic forces. A model based on the Poisson-Boltzmann distribution allow us to get the potential profile inside the water pool by determining the concentrations of the surfactant counter ions. From the potential profile and mass balance it is possible calculate the extraction percentage.  相似文献   
20.
Pulse-train multiplication based on the temporal Talbot effect in a linearly chirped fiber Bragg grating has been experimentally demonstrated. A 40-GHz repetition-rate, nearly transform-limited 10-ps duration optical pulse train at 1.533 mum has been obtained from a 2.5-GHz mode-locked Er- Yb:glass laser by use of a 100-cm-long linearly chirped apodized fiber grating.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号