首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   534篇
  免费   16篇
  国内免费   2篇
化学   357篇
晶体学   6篇
力学   15篇
数学   30篇
物理学   144篇
  2024年   1篇
  2023年   8篇
  2022年   7篇
  2021年   9篇
  2020年   13篇
  2019年   21篇
  2018年   17篇
  2017年   20篇
  2016年   23篇
  2015年   14篇
  2014年   15篇
  2013年   49篇
  2012年   24篇
  2011年   34篇
  2010年   22篇
  2009年   17篇
  2008年   31篇
  2007年   29篇
  2006年   30篇
  2005年   26篇
  2004年   19篇
  2003年   12篇
  2002年   14篇
  2001年   18篇
  2000年   11篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1995年   2篇
  1994年   2篇
  1992年   2篇
  1991年   5篇
  1990年   4篇
  1989年   2篇
  1988年   3篇
  1987年   8篇
  1986年   4篇
  1985年   2篇
  1984年   6篇
  1983年   6篇
  1982年   1篇
  1981年   8篇
  1980年   2篇
  1978年   2篇
  1977年   2篇
  1975年   1篇
  1973年   1篇
排序方式: 共有552条查询结果,搜索用时 0 毫秒
101.

Previous studies on mathematical characterization of proteomics maps by sets of map invariants were based on the construction of a set of distance-related matrices obtained by matrix multiplication of a single matrix by itself. Here we consider an alternative characterization of proteomics maps based on a set of matrices characterizing local features of an embedded zigzag curve over the map. It is shown that novel invariants can well characterize proteomics maps. Advantages of the novel approach are discussed.  相似文献   
102.
103.
We have theoretically investigated the magnetic properties of heteroallene (>C=C=X−) and heterocumulene (>C=C=C=X−) based tert-butyl nitroxide diradicals (X is P/As). Calculation of magnetic exchange coupling constant (J) shows ferromagnetic interaction in heteroallene based diradicals. Whereas, in heterocumulene based diradicals, tuning of J value from antiferro- to ferro-magnetic state is observed from Z- to E- isomer. Delocalization of spin density from radical site to the coupler (in planar arrangement) is observed in spin distribution analysis which is also advocated by molecular orbital analysis. The typical feature of tert-butyl nitroxide radical creates spin delocalization along with spin polarization within the coupler. The J values of all the diradicals strongly depend on the dihedral angle between radical center and coupler. Magneto-structural correlation shows that the change in dihedral angle tunes the magnetic property for both the Z- and E- isomers of heterocumulenes depending on the spin accumulation on two nearby magnetic centers. The extent of spin delocalization and conformation of spin centers on the molecular axis are important for the different J values observed in our designed systems.  相似文献   
104.
105.
A combined theoretical and experimental approach has been employed to characterize the hydrido-cobaloxime [HCo(dmgH)(2)(PnBu(3))] compound. This complex was originally investigated by Schrauzer et al. [Schrauzer et al., J. Am. Chem. Soc. 1971, 93,1505] and has since been referred to as a key, stable analogue of the hydride intermediate involved in hydrogen evolution catalyzed by cobaloxime compounds [Artero, V. et al. Angew. Chem., Int. Ed. 2011, 50, 7238-7266]. We employed quantum chemical calculations, using density functional theory and correlated RI-SCS-MP2 methods, to characterize the structural and electronic properties of the compound and observed important differences between the calculated (1)H NMR spectrum and that reported in the original study by Schrauzer and Holland. To calibrate the theoretical model, the stable hydrido tetraamine cobalt(III) complex [HCo(tmen)(2)(OH(2))](2+) (tmen = 2,3-dimethyl-butane-2,3-diamine) [Rahman, A. F. M. M. et al. Chem. Commun. 2003, 2748-2749] was subjected to a similar analysis, and, in this case, the calculated results agreed well with those obtained experimentally. As a follow-up to the computational work, the title hydrido-cobaloxime compound was synthesized and recharacterized experimentally, together with the Co(I) derivative, giving results that were in agreement with the theoretical predictions.  相似文献   
106.
A generic modular synthetic strategy for the fabrication of a series of binary‐ternary group II‐VI and group I‐III‐VI coupled semiconductor nano‐heterostructures is reported. Using Ag2Se nanocrystals first as a catalyst and then as sacrificial seeds, four dual semiconductor heterostructures were designed with similar shapes: CdSe‐AgInSe2, CdSe‐AgGaSe2, ZnSe‐AgInSe2, and ZnSe‐AgGaSe2. Among these, dispersive type‐II heterostructures are further explored for photocatalytic hydrogen evolution from water and these are observed to be superior catalysts than the binary or ternary semi‐conductors. Details of the chemistry of this modular synthesis have been studied and the photophysical processes involved in catalysis are investigated.  相似文献   
107.
108.
Lipopolysaccharide (LPS) provides a well-organized permeability barrier at the outer membrane of Gram-negative bacteria. Host defense cationic antimicrobial peptides (AMPs) need to disrupt the outer membrane before gaining access to the inner cytoplasmic membrane or intracellular targets. Several AMPs are largely inactive against Gram-negative pathogens due to the restricted permeation through the LPS layer of the outer membrane. MSI-594 (GIGKFLKKAKKGIGAVLKVLTTG) is a highly active AMP with a broad-spectrum of activities against bacteria, fungi, and virus. In the context of LPS, MSI-594 assumes a hairpin helical structure dictated by packing interactions between two helical segments. Residue Phe5 of MSI-594 has been found to be engaged in important interhelical interactions. In order to understand plausible structural and functional inter-relationship of the helical hairpin structure of MSI-594 with outer membrane permeabilization, a mutant peptide, termed MSI-594F5A, containing a replacement of Phe5 with Ala has been prepared. We have compared antibacterial activities, outer and inner membrane permeabilizations, LPS binding affinity, perturbation of LPS micelles structures by MSI-594 and MSI-594F5A peptides. Our results demonstrated that the MSI-594F5A has lower activities against Gram-negative bacteria, due to limited permeabilization through the LPS layer, however, retains Gram-positive activity, akin to MSI-594. The atomic-resolution structure of MSI-594F5A has been determined in LPS micelles by NMR spectroscopy showing an amphipathic curved helix without any packing interactions. The 3D structures, interactions, and activities of MSI-594 and its mutant MSI-594F5A in LPS provide important mechanistic insights toward the requirements of LPS specific conformations and outer membrane permeabilization by broad-spectrum antimicrobial peptides.  相似文献   
109.
110.
The qualitative rules for the existence of high‐spin ground states in extended systems and molecular crystals are examined here on a firmer theoretical footing. Extended systems have been categorized into three groups, namely, type I, type II, and type III, depending on the type of bonding interactions. The general form of the spin Hamiltonian operators have been written down. The active spaces have been restricted to the minimum size for each of these three types of spin systems. The zeroth‐order state vectors and the Hartree–Fock ground‐state energies have been identified for unit species of each type. The extended system Hamiltonian operators are further truncated in such a way that only the nearest‐neighbor interactions are retained. Expressions have been derived for the energy gap from a molecular orbital approach. The relatively small effects of electron correlation on the energy gaps have been estimated for the type I systems, which belong to the systems of solid‐state physics. In particular, it has been shown that for the type I systems the singlet–triplet gap, and hence the ferromagnetic coupling constant, primarily depends upon the difference of one‐electron kinetic energies and not on the two‐electron exchange integrals. This result agrees with the concept of kinetic exchange that was introduced in the context of a resonating valence‐bond formalism. Type II systems are exemplified by extended systems that can be prepared from conjugated molecules while organic molecular crystals form examples of type III species. For these systems, however, the Coulomb exchange interaction has been shown to dominate the energy gap. A quick review of the Heisenberg spin Hamiltonian for the H2 molecule is sufficient to point out that the sign of the calculated ferromagnetic coupling constant depends on the method of calculation, the nature of the basis set, and the bond length. This is amply supported by ab initio calculations on this species. Numerical data have also been obtained from computations on m‐phenylene‐coupled nitroxy radicals and stacks of α‐nitronyl nitroxide, but these calculations have been based on a semiempirical quantum chemical methodology (INDO) since some of the species involved are exceedingly large. Computed energy gaps are in good agreement with experimental and other theoretical (AM1, PM3) results. Nevertheless, for the dimer, trimer, tetramer, and pentamer of the type II specimen, the important π orbitals are far from being degenerate. The quantitative results clearly deviate from the criterion of degeneracy that was suggested from qualitative theories for the existence of a high‐spin ground state. Therefore, the criteria for the existence of high spins have been reformulated in terms of the monomer orbitals. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 79: 308–324, 2000  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号