首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1588篇
  免费   56篇
  国内免费   3篇
化学   1130篇
晶体学   5篇
力学   13篇
数学   321篇
物理学   178篇
  2022年   21篇
  2021年   28篇
  2020年   21篇
  2019年   27篇
  2018年   11篇
  2017年   21篇
  2016年   37篇
  2015年   37篇
  2014年   37篇
  2013年   61篇
  2012年   69篇
  2011年   64篇
  2010年   48篇
  2009年   39篇
  2008年   61篇
  2007年   61篇
  2006年   67篇
  2005年   53篇
  2004年   48篇
  2003年   33篇
  2002年   32篇
  2001年   18篇
  2000年   16篇
  1999年   15篇
  1998年   12篇
  1997年   23篇
  1996年   17篇
  1995年   19篇
  1994年   23篇
  1993年   20篇
  1992年   32篇
  1991年   27篇
  1990年   30篇
  1989年   30篇
  1988年   15篇
  1987年   15篇
  1986年   14篇
  1985年   19篇
  1984年   22篇
  1983年   19篇
  1982年   16篇
  1981年   25篇
  1980年   18篇
  1979年   29篇
  1978年   22篇
  1977年   29篇
  1976年   19篇
  1975年   17篇
  1974年   16篇
  1973年   13篇
排序方式: 共有1647条查询结果,搜索用时 31 毫秒
61.
>The combination of CoCl2 with bidentate phosphines is known to catalyze challenging cross-coupling and Heck-type reactions, but the mechanisms of these valuable transformations have not been established. Here, we use electrospray-ionization mass spectrometry to intercept the species formed in these reactions. Our results indicate that a sequence of transmetalation, reductive elimination, and redox disproportionation convert the cobalt(II) precatalyst into low-valent cobalt complexes. These species readily transfer single electrons to alkyl bromides, which thereupon dissociate into alkyl radicals and Br. In cross-coupling reactions, the alkyl radicals add to the cobalt catalyst to form observable heteroleptic complexes, which release the coupling products through reductive eliminations. In the Heck-type reactions, the low abundance of newly formed ionic species renders the analysis more difficult. Nonetheless, our results also point to the occurrence of single-electron transfer processes and the involvement of radicals in these transformations.  相似文献   
62.
63.
64.
The aim of this study was to evaluate the bioremoval mechanism of anthracycline antibiotics by the white-rot fungus B. adusta CCBAS 930. The activity of oxidoreductases and levels of phenolic compounds and free radicals were determined during the biotransformation of anthraquinone antibiotics: daunomycin (DNR) and doxorubicin (DOX) by B. adusta strain CCBAS 930. Moreover, phytotoxicity (Lepidium sativum L.), ecotoxicity (Vibrio fischeri), genotoxicity and cytotoxicity of anthraquinone dyes were evaluated before and after biological treatment. More than 80% and 90% of DNR and DOX were removed by biodegradation (decolorization). Initial solutions of DNR and DOX were characterized by eco-, phyto-, geno- and cytotoxicity. Despite efficient decolorization, secondary metabolites, toxic to bacteria, formed during biotransformation of anthracycline antibiotics in B. adusta CCBAS 930 cultures. DNR and DOX metabolites did not increase reactive oxygen species (ROS) production in human fibroblasts and resazurin reduction. DNR metabolites did not change caspase-3 activity.  相似文献   
65.
The highly porous and stable metal–organic framework (MOF) UiO‐66 was altered using post‐synthetic modifications (PSMs). Prefunctionalization allowed the introduction of carbon double bonds into the framework through a four‐step synthesis from 2‐bromo‐1,4‐benzenedicarboxylic acid; the organic linker 2‐allyl‐1,4‐benzenedicarboxylic acid was obtained. The corresponding functionalized MOF (UiO‐66‐allyl) served as a platform for further PSMs. From UiO‐66‐allyl, epoxy, dibromide, thioether, diamine, and amino alcohol functionalities were synthesized. The abilities of these compounds to adsorb CO2 and N2 were compared, which revealed the structure–selectivity correlations. All synthesized MOFs showed profound thermal stability together with an increased ability for selective CO2 uptake and molecular gate functionalities at low temperatures.  相似文献   
66.
67.
68.
Grignard reagents RMgCl and their so‐called turbo variant, the highly reactive RMgCl?LiCl, are of exceptional synthetic utility. Nevertheless, it is still not fully understood which species these compounds form in solution and, in particular, in which way LiCl exerts its reactivity‐enhancing effect. A combination of electrospray‐ionization mass spectrometry, electrical conductivity measurements, NMR spectroscopy (including diffusion‐ordered spectroscopy), and quantum chemical calculations is used to analyze solutions of RMgCl (R=Me, Et, Bu, Hex, Oct, Dec, iPr, tBu, Ph) in tetrahydrofuran and other ethereal solvents in the absence and presence of stoichiometric amounts of LiCl. In tetrahydrofuran, RMgCl forms mononuclear species, which are converted into trinuclear anions as a result of the concentration increase experienced during the electrospray process. These trinuclear anions are theoretically predicted to adopt open cubic geometries, which remarkably resemble structural motifs previously found in the solid state. The molecular constituents of RMgCl and RMgCl?LiCl are interrelated via Schlenk equilibria and fast intermolecular exchange processes. A small portion of the Grignard reagent also forms anionic ate complexes in solution. The abundance of these more electron‐rich and hence supposedly more nucleophilic ate complexes strongly increases upon the addition of LiCl, thus rationalizing its beneficial effect on the reactivity of Grignard reagents.  相似文献   
69.
A gas turbine power plant for CO2 capture, based on oxygen-permeable membranes with mixed ionic-electronic conductivity, was analysed with respect to long-term stability by means of numerical simulation. Due to the attractive transport and physicochemical properties of mixed-conducting La2NiO4+δ, this nickelate was selected as a prototype membrane material for this application. Experiments showed very slow degradation of La2NiO4+δ membranes at oxygen chemical potentials close to atmospheric conditions, which are associated with kinetic demixing and other microstructure-related factors. Interaction with CO2 in the intermediate temperature range also leads to lower oxygen permeation, whilst increasing oxygen pressure may cause partial phase decomposition and microstructural changes, thus again limiting the range of possible operation conditions. The relevant operational constraints were included in a detailed membrane-based gas turbine power plant model. The membrane performance degradation with time was approximated by a linear function with average rate of 3.3% per 1,000 operation hours. Furthermore, performance deterioration of the gas turbine compressor and turbine were also considered. Simulations revealed that the power plant is substantially affected by degradation of the ceramic membranes and turbomachinery components. The already rather small operating window was further narrowed when compared with a conventional gas turbine power plant. Two different designs of the membrane-based power plant were analysed: (1) with and (2) without additional combustors (afterburners) between the membrane reactor and the gas turbine. Afterburners increase thermal efficiency as well as power output, but also lead to non-negligible CO2 emissions. In order to have a frame of comparison, results for a conventional gas turbine power plant with degradation of turbomachinery components are also presented. Simulations representing changes in ambient temperature and fuel composition as well as failure incidents were executed to analyse the susceptibility of the gas turbine power plant to external and internal changes.  相似文献   
70.
Static and dynamic average polarisabilities and polarisability anisotropies of seven linear non-polar and polar molecules are calculated within the CCS, CC2, and CC3 approximations using a range of medium-sized basis sets: the polarised LPol-n (n = ds, dl, fs, fl), the aug-pc-n (n = 1, 2), the def2-SVPD, and -TZVPD basis sets. Reference values are obtained using a hierarchy of Dunning's (d-)aug-cc-pVXZ (X = D, T, Q, 5) basis sets. The results are discussed together with the available CCSD values in terms of basis set and correlation method errors, and their ratio. Detailed analysis shows that already the def2-SVPD basis set can be used in CCS polarisability calculations. When affordable, the slightly larger aug-pc-1 basis set is recommended, as it leads to significant reduction of basis set error. The def2-TZVPD, LPol-ds, and aug-pc-2 basis sets are optimal choice within the CC2 approximation, with the latter allowing to approach the CC2 basis set limit. The LPol-ds, -dl, and def2-TZVPD sets outperform the aug-cc-pVTZ set in average polarisability CCSD calculations, with the def2-TZVPD being competitive to other reduced-size sets also in determination of polarisability anisotropy. The aug-pc-2 basis is a particularly attractive choice for CCSD, giving the accuracy of aug-cc-pVQZ at a significantly reduced computational cost. The polarisability anisotropy is shown to be more computationally demanding than the average polarisability, in particular with respect to the accuracy of the correlation method and an accurate evaluation of this property requires at least the CCSD model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号