首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1588篇
  免费   56篇
  国内免费   3篇
化学   1130篇
晶体学   5篇
力学   13篇
数学   321篇
物理学   178篇
  2022年   21篇
  2021年   28篇
  2020年   21篇
  2019年   27篇
  2018年   11篇
  2017年   21篇
  2016年   37篇
  2015年   37篇
  2014年   37篇
  2013年   61篇
  2012年   69篇
  2011年   64篇
  2010年   48篇
  2009年   39篇
  2008年   61篇
  2007年   61篇
  2006年   67篇
  2005年   53篇
  2004年   48篇
  2003年   33篇
  2002年   32篇
  2001年   18篇
  2000年   16篇
  1999年   15篇
  1998年   12篇
  1997年   23篇
  1996年   17篇
  1995年   19篇
  1994年   23篇
  1993年   20篇
  1992年   32篇
  1991年   27篇
  1990年   30篇
  1989年   30篇
  1988年   15篇
  1987年   15篇
  1986年   14篇
  1985年   19篇
  1984年   22篇
  1983年   19篇
  1982年   16篇
  1981年   25篇
  1980年   18篇
  1979年   29篇
  1978年   22篇
  1977年   29篇
  1976年   19篇
  1975年   17篇
  1974年   16篇
  1973年   13篇
排序方式: 共有1647条查询结果,搜索用时 15 毫秒
51.
Halogenation of Et3N, (i-Pr)2EtN, and N-ethylmorpholine or of enamines with dichlorotriphenylphosphorane gives in up to 75% yield the corresponding [2-(dialkylamino)vinyl]triphenylphosphonium chlorides, which can be readily converted into the corresponding stable crystalline tetraphenylborates (Schemes 2 and 3).  相似文献   
52.
Reaction between the cluster salts [(eta(5)-Cp')(3)M(3)S(4)][pts] (M = Mo, W; Cp' = methylcyclopentadienyl; pts = p-toluenesulfonate) and [Co(2)(CO)(8)] yielded the electroneutral clusters [(eta(5)-Cp')(3)M(3)S(4)Co(CO)]. The molecular structure of [(eta(5)-Cp')(3)W(3)S(4)Co(CO)] was determined by single-crystal X-ray diffraction methods. The unprecedented 60 electron W(3)S(4)Co cluster completes a homologous series of heterobimetallic clusters, [(eta(5)-Cp')(3)M(3)S(4)Co(CO)] (M = Cr, Mo, W), containing a cubane-like core motif.  相似文献   
53.
By reaction of the geometrically incomplete cubane-like clusters [(eta(5)-Cp')(3)Mo(3)S(4))][pts] and [(eta(5)-Cp')(3)W(3)S(4)][pts] (Cp' = methylcyclopentadienyl; pts = p-toluenesulfonate) with group 10 alkene complexes, three new heterobimetallic clusters with cubane-like cluster cores were isolated: [(eta(5)-Cp')(3)W(3)S(4)M'(PPh(3))][pts] ([5][pts], M' = Pd; [6][pts], M' = Pt); [(eta(5)-Cp')(3)Mo(3)S(4)Ni(AsPh(3))][pts] ([7][pts]). The compounds [5][pts]-[7][pts] are completing the extensive series of clusters [(eta(5)-Cp')(3)M(3)S(4)M'(EPh(3))][pts] (M = Mo, W; M' = Ni, Pd, Pt; E = P, As) which allows the consequences of replacing a single type of atom on structural and NMR and UV/vis spectroscopic as well as electrochemical properties to be determined. Single-crystal X-ray structure determinations of [5][pts]-[7][pts] revealed that [5][pts] was not isomorphous to the other members of the series [(eta(5)-Cp')(3)M(3)S(4)M'(EPh(3))][pts] due to distinctly different cell parameters, which in the molecular structure of [5](+) is reflected in a slightly different orientation of the PPh(3) ligand. Electrochemical measurements on the series showed that the Mo-based clusters were more difficult to oxidize than their W-based analogues. The Pd-containing clusters underwent two-electron oxidation processes, whereas the Ni- and Pt-containing clusters underwent two separated one-electron oxidation processes.  相似文献   
54.
Summary The effect of hydrogen reduction on the structure and catalytic properties of “thin film”and “inverse”model systems for supported metal catalysts is discussed. Thin film model catalysts were obtained by epitaxial growth of Pt and Rh nanoparticles on NaCl(001), which were coated with amorphous or crystalline supports of alumina, silica, titania, ceria and vanadia. Structural and morphological changes upon hydrogen reduction between 473 and 973 K were examined by high resolution electron microscopy. Metal-oxide interaction sets in at a specific reduction temperature and is characterized by an initial “wetting”stage, followed by alloy formation at increasing temperature, in the order VOx< TiOx< SiO2< CeOx< Al2O3. “Inverse”model systems were prepared by deposition of oxides on a metal substrate, e.g. VOx/Rh and VOx/Pd. Reduction of inverse systems at elevated temperature induces subsurface alloy formation. In contrast to common bimetallic surfaces, the stable subsurface alloys of V/Rh and V/Pd have a purely noble metal-terminated surface, with V positioned in near-surface layers. The uniform composition of the metallic surface layer excludes catalytic ensemble effects in favor of ligand effects. Activity and selectivity, e.g. for CO and CO2methanation and for partial oxidation of ethene, are mainly controlled by the temperature of annealing or reduction. Reduction above 573 K turned out to be beneficial for the catalytic activity of the subsurface alloys, but not for the corresponding thin film systems which tend to deactivate viaparticle encapsulation.</o:p>  相似文献   
55.
Various condensed areno[g]lumazine derivatives 2 , 3 , and 5 – 7 were synthesized as new fluorescent aglycones for glycosylation reactions with 2-deoxy-3, 5-di-O-(p-toluoyl)-α/β-D -erythro-pentofuranosyl chloride ( 10 ) to form, in a Hilbert-Johnson-Birkofer reaction, the corresponding N1-(2′-deoxyribonucleosides) 15 – 21 . The β-D -anomers 15 , 17 , 19 , and 21 were deblocked to 24 – 27 and, together with N1-(2′-deoxy-β-D -ribofuranosyl)lumazine ( 22 ) and its 6, 7-diphenyl derivative 23 , dimethoxytritylated in 5′-position to 28–33. These intermediates were then converted into the 3′-(2-cyanoethyI diisopropylphosphoramidites) 34 – 39 which function as monomeric building block in oligonucleotide syntheses as well as into the 3′-(hydrogen succinates) 40 – 45 which can be used for coupling with the solid-support material. A series of lumazine-modified oligonucleotides were synthesized and the influence of the new nucleobases on the stability of duplex formation studied by measuring the Tm values in comparison to model sequences. A substantial increase in the Tm is observed on introduction of areno[g]lumazine moieties in the oligonucleotide chain stabilizing obviously the helical structures by improved stacking effects. Stabilization is strongly dependent on the site of the modified nucleobase in the chain.  相似文献   
56.
The mobile phase of a fraction eluted from a first LC column is removed by an on-line evaporator in order to reconcentrate the solute material or to exchange the eluent before performing a subsequent LC separation. Evaporation essentially occurs by concurrent evaporation, i.e. the solvent evaporates at a rate equal to the flow rate of the incoming eluent, and is driven by the overflow principle, i.e. vapors leave the tube as a result of the expansion resulting from evaporation. The liquid is introduced into a small tube (e.g., 4 cm × 1.3 mm i.d.) which is packed, e.g., with a coarse silica gel. The outlet of the evaporator is connected to vacuum in order to enable evaporation at reduced temperature and to increase retention of the volatile components. With normal phase eluents, evaporation rates may approach 1 ml/min; n-dodecane was the most volatile n-alkane fully retained by the evaporator.  相似文献   
57.
58.
59.
60.
The pivalates RZnOPiv⋅Mg(OPiv)X⋅n LiCl (OPiv=pivalate; R=aryl; X=Cl, Br, I) stand out amongst salt‐supported organometallic reagents, because apart from their effectiveness in Negishi cross‐coupling reactions, they show more resistance to attack by moist air than conventional organometallic compounds. Herein a combination of synthesis, coupling applications, X‐ray crystallographic studies, NMR (including DOSY) studies, and ESI mass spectrometric studies provide details of these pivalate reagents in their own right. A p‐tolyl case system shows that in [D8]THF solution these reagents exist as separated Me(p‐C6H4)ZnCl and Mg(OPiv)2 species. Air exposure tests and X‐ray crystallographic studies indicate that Mg(OPiv)2 enhances the air stability of aryl zinc species by sequestering H2O contaminants. Coupling reactions of Me(p‐C6H4)ZnX (where X=different salts) with 4‐bromoanisole highlight the importance of the presence of Mg(OPiv)2. Insight into the role of LiCl in these multicomponent mixtures is provided by the molecular structure of [(THF)2Li2(Cl)2(OPiv)2Zn].  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号