首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1986篇
  免费   82篇
  国内免费   25篇
化学   1275篇
晶体学   4篇
力学   70篇
数学   346篇
物理学   398篇
  2022年   18篇
  2021年   21篇
  2020年   28篇
  2019年   35篇
  2018年   21篇
  2017年   22篇
  2016年   59篇
  2015年   51篇
  2014年   51篇
  2013年   82篇
  2012年   122篇
  2011年   160篇
  2010年   76篇
  2009年   71篇
  2008年   107篇
  2007年   126篇
  2006年   133篇
  2005年   121篇
  2004年   85篇
  2003年   89篇
  2002年   96篇
  2001年   35篇
  2000年   25篇
  1999年   19篇
  1998年   22篇
  1997年   28篇
  1996年   18篇
  1995年   12篇
  1994年   14篇
  1993年   18篇
  1992年   22篇
  1991年   16篇
  1990年   9篇
  1989年   11篇
  1988年   9篇
  1987年   12篇
  1986年   8篇
  1985年   18篇
  1984年   19篇
  1983年   17篇
  1982年   16篇
  1981年   20篇
  1980年   11篇
  1979年   8篇
  1978年   17篇
  1977年   12篇
  1976年   11篇
  1975年   8篇
  1973年   11篇
  1969年   8篇
排序方式: 共有2093条查询结果,搜索用时 15 毫秒
141.
142.
    
The collective phenomena of quantum interference, including wave particle duality and apparent non-locality, have intrigued the physics community for many years. It is only recently that we have begun to turn these somewhat counter intuitive quantum phenomena to good use. A leading force in that direction is quantum cryptography - absolute secure key exchange encoding data on the polarisation or phase of individual photons, or using the quantum correlations between pairs of particles. Technologies are now implemented to bring the various forms of quantum cryptography to commercial application. At the same time the possibility of communications applications has stimulated the study of a variety of novel quantum interference phenomena. Quantum information experiments involving two, three and four photons are planned and a novel Field of continuous variable (many photon) quantum information has emerged. These various aspects of quantum cryptography are considered in the conference “QUICK: Quan- tum interference and cryptographic keys: novel physics and advancing technologies", taking place in Cargese from April 7 to 13, 2001. Following that conference, we invite submission of original papers to a special issue of the European Physical Journal D, on the following topics: - quantum cryptography technologies, - quantum cryptography systems, - free space quantum cryptography and satellites, - pair-photon sources and multiphoton interference, - single photon sources, - continuous variable quantum information, - security aspects, - cryptographic protocols, - entanglement purification in cryptographic schemes, - novel physics and quantum gates for photonic qubits. The submitted articles should be sent to the EPJ D Editorial Office in Orsay. The deadline is July 15, 2001. We look forward to a stimulating special issue.  相似文献   
143.
The collective phenomena of quantum interference, including wave particle duality and apparent non-locality, have intrigued the physics community for many years. It is only recently that we have begun to turn these somewhat counter intuitive quantum phenomena to good use. A leading force in that direction is quantum cryptography - absolute secure key exchange encoding data on the polarisation or phase of individual photons, or using the quantum correlations between pairs of particles. Technologies are now implemented to bring the various forms of quantum cryptography to commercial application. At the same time the possibility of communications applications has stimulated the study of a variety of novel quantum interference phenomena. Quantum information experiments involving two, three and four photons are planned and a novel Field of continuous variable (many photon) quantum information has emerged. These various aspects of quantum cryptography are considered in the conference “QUICK: Quan- tum interference and cryptographic keys: novel physics and advancing technologies", taking place in Cargese from April 7 to 13, 2001. Following that conference, we invite submission of original papers to a special issue of the European Physical Journal D, on the following topics: - quantum cryptography technologies, - quantum cryptography systems, - free space quantum cryptography and satellites, - pair-photon sources and multiphoton interference, - single photon sources, - continuous variable quantum information, - security aspects, - cryptographic protocols, - entanglement purification in cryptographic schemes, - novel physics and quantum gates for photonic qubits. The submitted articles should be sent to the EPJ D Editorial Office in Orsay. The deadline is July 15, 2001. We look forward to a stimulating special issue.  相似文献   
144.
    
The collective phenomena of quantum interference, including wave particle duality and apparent non-locality, have intrigued the physics community for many years. It is only recently that we have begun to turn these somewhat counter intuitive quantum phenomena to good use. A leading force in that direction is quantum cryptography - absolute secure key exchange encoding data on the polarisation or phase of individual photons, or using the quantum correlations between pairs of particles. Technologies are now implemented to bring the various forms of quantum cryptography to commercial application. At the same time the possibility of communications applications has stimulated the study of a variety of novel quantum interference phenomena. Quantum information experiments involving two, three and four photons are planned and a novel Field of continuous variable (many photon) quantum information has emerged. These various aspects of quantum cryptography are considered in the conference “QUICK: Quan- tum interference and cryptographic keys: novel physics and advancing technologies", taking place in Cargese from April 7 to 13, 2001. Following that conference, we invite submission of original papers to a special issue of the European Physical Journal D, on the following topics: - quantum cryptography technologies, - quantum cryptography systems, - free space quantum cryptography and satellites, - pair-photon sources and multiphoton interference, - single photon sources, - continuous variable quantum information, - security aspects, - cryptographic protocols, - entanglement purification in cryptographic schemes, - novel physics and quantum gates for photonic qubits. The submitted articles should be sent to the EPJ D Editorial Office in Orsay. The deadline is July 15, 2001. We look forward to a stimulating special issue.  相似文献   
145.
The influence of temperature and moisture activity on the viscoelastic behavior of fluorinated membranes for fuel cell applications was investigated. Uncrosslinked and crosslinked ethylene tetrafluoroethylene (ETFE)‐based proton‐conducting membranes were prepared by radiation grafting and subsequent sulfonation and their behavior was compared with ETFE base film and commercial Nafion® NR212 membrane. Uniaxial tensile tests and stress relaxation tests at controlled temperature and relative humidity (RH) were carried out at 30 and 50 °C for 10% < RH < 90%. Grafted films were stiffer and exhibited stronger strain hardening when compared with ETFE. Similarly, both uncrosslinked and crosslinked membranes were stiffer and stronger than Nafion®. Yield stress was found to decrease and moisture sensitivity to increase on sulfonation. The viscoelastic relaxation of the grafted films was found to obey a power‐law behavior with exponent equal to ?0.04 ± 0.01, a factor of almost 2 lower than ETFE, weakly influenced by moisture and temperature. Moreover, the grafted films presented a higher hygrothermal stability when compared with their membranes counterparts. In the case of membranes, a power‐law behavior at RH < 60% was also observed. However, a markedly different behavior was evident at RH > 60%, with an almost single relaxation time exponential. An exponential decrease of relaxation time with RH from 60 s to 10 s was obtained at RH ≥ 70% and 30 °C. The general behavior of grafted films observed at 30 °C was also obtained at 50 °C. However, an anomalous result was noticed for the membranes, with a higher modulus at 50 °C when compared with 30 °C. This behavior was explained by solvation of the sulfonic acid groups by water absorption creating hydrogen bonding within the clusters. A viscoelastic phase diagram was elaborated to map critical conditions (temperature and RH) for transitions in time‐dependent behavior, from power‐law scaling to exponential scaling. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 1139–1148  相似文献   
146.
147.
A set M of edges of a graph G is a matching if no two edges in M are incident to the same vertex. A set S of vertices in G is a total dominating set of G if every vertex of G is adjacent to some vertex in S. The matching number is the maximum cardinality of a matching of G, while the total domination number of G is the minimum cardinality of a total dominating set of G. In this paper, we investigate the relationships between the matching and total domination number of a graph. We observe that the total domination number of every claw-free graph with minimum degree at least three is bounded above by its matching number, and we show that every k-regular graph with k?3 has total domination number at most its matching number. In general, we show that no minimum degree is sufficient to guarantee that the matching number and total domination number are comparable.  相似文献   
148.
Elastic SH wave propagation in a layered anisotropic plate withinterface damage is modelled in several steps. A single interfacecrack between two half-spaces is first studied and an explicitsolution for the crack-opening displacement is obtained at lowfrequencies. This is then generalised to a random distributionof cracks at the interface and the result is reformulated asa spring boundary condition. As an example of its usefulness,this boundary condition is then used in the derivation of aplate equation by expanding the displacements in power seriesin the thickness coordinate.  相似文献   
149.
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号