首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1609篇
  免费   85篇
  国内免费   25篇
化学   1014篇
晶体学   4篇
力学   87篇
数学   258篇
物理学   356篇
  2024年   4篇
  2023年   13篇
  2022年   50篇
  2021年   42篇
  2020年   78篇
  2019年   53篇
  2018年   56篇
  2017年   46篇
  2016年   102篇
  2015年   82篇
  2014年   101篇
  2013年   134篇
  2012年   142篇
  2011年   152篇
  2010年   105篇
  2009年   70篇
  2008年   62篇
  2007年   76篇
  2006年   73篇
  2005年   46篇
  2004年   50篇
  2003年   37篇
  2002年   36篇
  2001年   20篇
  2000年   8篇
  1999年   3篇
  1998年   6篇
  1997年   5篇
  1996年   10篇
  1995年   2篇
  1994年   5篇
  1993年   2篇
  1992年   5篇
  1991年   4篇
  1987年   2篇
  1986年   2篇
  1984年   5篇
  1983年   2篇
  1981年   2篇
  1980年   2篇
  1978年   4篇
  1976年   3篇
  1975年   2篇
  1974年   5篇
  1969年   1篇
  1965年   1篇
  1964年   1篇
  1963年   1篇
  1930年   1篇
  1925年   1篇
排序方式: 共有1719条查询结果,搜索用时 562 毫秒
991.
Successful lead optimization in structure‐based drug discovery depends on the correct deduction and interpretation of the underlying structure–activity relationships (SAR) to facilitate efficient decision‐making on the next candidates to be synthesized. Consequently, the question arises, how frequently a binding mode (re)‐validation is required, to ensure not to be misled by invalid assumptions on the binding geometry. We present an example in which minor chemical modifications within one inhibitor series lead to surprisingly different binding modes. X‐ray structure determination of eight inhibitors derived from one core scaffold resulted in four different binding modes in the aspartic protease endothiapepsin, a well‐established surrogate for e.g. renin and β‐secretase. In addition, we suggest an empirical metrics that might serve as an indicator during lead optimization to qualify compounds as candidates for structural revalidation.  相似文献   
992.
Garcinia species are reported to possess antimicrobial, anti-inflammatory, anticancer, anti-HIV and anti-Alzheimer's activities. This study aimed to investigate the in vitro cholinesterase enzyme inhibitory activities of garcihombronane C (1), garcihombronane F (2), garcihombronane I (3), garcihombronane N (4), friedelin (5), clerosterol (6), spinasterol glucoside (7) and 3β-hydroxy lup-12,20(29)-diene (8) isolated from Garcinia hombroniana, and to perform molecular docking simulation to get insight into the binding interactions of the ligands and enzymes. The cholinesterase inhibitory activities were evaluated using acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. In this study, compound 4 displayed the highest concentration-dependent inhibition of both AChE and BChE. Docking studies exhibited that compound 4 binds through hydrogen bonds to amino acid residues of AChE and BChE. The calculated docking and binding energies also supported the in vitro inhibitory profiles of IC50. In conclusion, garcihombronanes C, F, I and N (14) exhibited dual and moderate inhibitory activities against AChE and BChE.  相似文献   
993.
Cesium carbonate supported on hydroxyapatite coated Ni0.5Zn0.5Fe2O4 magnetic nanoparticles (Ni0.5Zn0.5Fe2O4@Hap-Cs2CO3) was found to be magnetically separable, highly efficient, green and recyclable heterogeneous catalyst. The synthesized nanocatalyst has been characterized with several methods (FT-IR, SEM, TEM, XRD and XRF) and these analyzes confirmed which the cesium carbonate is well supported to catalyst surface. After full characterization, its catalytic activity was investigated in the synthesis of pyranopyrazole derivatives and the reactions were carried out at room temperature in 50:50 water/ethanol with excellent yields (88-95%). More importantly, the Ni0.5Zn0.5Fe2O4@Hap-Cs2CO3 was easily separated from the reaction mixture by external magnetic field and efficiently reused at least six runs without any loss of its catalytic activity. Thus, the developed nanomagnetic base catalyst is potentially useful for the green and economic production of organic compounds.  相似文献   
994.
Ionic polymers have attracted considerable attention due to their interesting sensing and actuating behavior which make them a proper choice for use in a wide range of applications including biomimetic robots and biomedical devices. The complicated electro‐chemo‐mechanical dynamics of ionic polymer actuators is a drawback for their applications in functional devices. Therefore, establishing a mathematical model which could effectively predict the actuators' dynamic behavior is of great interest. In this paper, a mathematical model, named equivalent dynamic thermoviscoelastic (EDT) model, based on thermal analogy and beam theory is proposed for dynamic analysis of bending‐type ionic polymer actuators. Then, the developed model is extended for analyzing the performance of the actuator in finite element software. The finite element analysis of the actuator enables consideration of material and geometric nonlinearities and facilitates modeling of functional devices based on the ionic polymer actuators. The proposed modeling approach is validated using experimental data. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
995.
Synthesis and characterization of polyaniline‐grafted poly(styrene‐alt‐maleic anhydride) (PANI‐g‐PSMA) was carried out to obtain conductive comb copolymers with highly improved processability. First, polyaniline (PANI) was prepared in nano‐scale by chemical synthesis under ultrasonic irradiation. Then the poly(styrene‐alt‐maleic anhydride) (PSMA) was synthesized by free radical polymerization. Moreover, the PANI was grafted on the PSMA backbone to prepare a comb‐like conductive copolymer for improving its processability as a new method. The products were characterized by Fourier transform infrared, ultraviolet–visible spectroscopy and X‐ray diffraction patterns. Morphology of the samples was also investigated by scanning electron microscopy images. Finally, the solubility and conductivity of the products were studied, and it resulted in high solubility of the products in water and other common organic solvents in comparison to the pure PANI. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
996.
In the present investigation, the preparation, characterization, and surface morphology of poly(amide‐imide) (PAI)/multi‐walled carbon nanotubes (MWCNTs) bionanocomposites (BNCs) were the main goals of the study. At first, an optically active PAI based on S‐valine as a biodegradable segment was synthesized. Then, carboxyl‐modified MWCNTs were functionalized with glucose (f‐MWCNT) as a biological active molecule in a green method to achieve a fine dispersion of f‐MWCNT bundles in the PAI matrix. The existence of S‐valine in the PAI matrix and functionalized MWCNT with glucose resulted in a series of potentially biodegradable nanocomposites. The obtained BNCs were characterized by various techniques. Field emission scanning and transmission electron microscopy micrographs of the composites showed a fine dispersion of f‐MWCNTs in the polymer matrix because of hydrogen bonding and π–π stacking interaction between f‐MWCNTs and polymer functional groups and aromatic moieties. Adding f‐MWCNTs into polymer matrix significantly improved the thermal stability of BNCs because of the increased interfacial interaction between the PAI matrix and f‐MWCNTs and also good dispersion of f‐MWCNT in the polymer matrix. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
997.
A thermodynamically guided calculation of free energies of substrate and product molecules allows for the estimation of the yields of organic reactions. The non‐ideality of the system and the solvent effects are taken into account through the activity coefficients calculated at the molecular level by perturbed‐chain statistical associating fluid theory (PC‐SAFT). The model is iteratively trained using a diverse set of reactions with yields that have been reported previously. This trained model can then estimate a priori the yields of reactions not included in the training set with an accuracy of ca. ±15 %. This ability has the potential to translate into significant economic savings through the selection and then execution of only those reactions that can proceed in good yields.  相似文献   
998.
166Ho is one of the most effective radionuclides used for radiosynovectomy. One method to deliver this radioisotope to target tissue is via the 166Dy/166Ho in vivo generator system. The aim of this work was to prepare 166Dy/166Ho-chitosan (166Dy/166Ho-CHIT) in vivo generator for radiosynovectomy applications. 166Dy obtained by the irradiation of natural 164Dy target. 166Dy was separated from 166Ho by extraction chromatographic method (separation yield; 93% and separation factor;1.7). Chitosan labeling was performed in acetic acid with 99.3 ± 0.6% radiochemical purity. Biodistribution studies on intraarticular injected rats demonstrated high retention in the knee joint even 7 days showing no radioactivity leakage from the injection site into other organs as well as any translocation of the daughter nucleus after β? decay of 166Dy.  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号