首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   786篇
  免费   23篇
  国内免费   3篇
化学   434篇
晶体学   7篇
力学   25篇
数学   50篇
物理学   296篇
  2023年   13篇
  2022年   15篇
  2021年   21篇
  2020年   23篇
  2019年   24篇
  2018年   18篇
  2017年   17篇
  2016年   24篇
  2015年   12篇
  2014年   26篇
  2013年   39篇
  2012年   30篇
  2011年   38篇
  2010年   30篇
  2009年   24篇
  2008年   35篇
  2007年   37篇
  2006年   38篇
  2005年   32篇
  2004年   33篇
  2003年   25篇
  2002年   12篇
  2001年   20篇
  2000年   13篇
  1999年   8篇
  1998年   4篇
  1997年   6篇
  1995年   7篇
  1994年   10篇
  1993年   9篇
  1992年   8篇
  1991年   12篇
  1990年   13篇
  1989年   9篇
  1988年   13篇
  1987年   10篇
  1986年   7篇
  1985年   10篇
  1984年   11篇
  1983年   6篇
  1982年   5篇
  1981年   10篇
  1980年   13篇
  1979年   3篇
  1978年   7篇
  1977年   5篇
  1976年   3篇
  1974年   5篇
  1973年   3篇
  1933年   3篇
排序方式: 共有812条查询结果,搜索用时 15 毫秒
141.
Catalytic cross-coupling of aryl Grignard reagents with primary and secondary alkyl halides bearing beta-hydrogens is achieved using Fe(III) amine-bis(phenolate) halide complexes.  相似文献   
142.
The folding mechanism and dynamics of a helical protein may strongly depend on how quickly its constituent alpha-helices can fold independently. Thus, our understanding of the protein folding problem may be greatly enhanced by a systematic survey of the folding rates of individual alpha-helical segments derived from their parent proteins. As a first step, we have studied the relaxation kinetics of the central helix (L9:41-74) of the ribosomal protein L9 from the bacterium Bacillus stearothermophilus , in response to a temperature-jump ( T-jump) using infrared spectroscopy. L9:41-74 has been shown to exhibit unusually high helicity in aqueous solution due to a series of side chain-side chain interactions, most of which are electrostatic in nature, while still remaining monomeric over a wide concentration range. Thus, this peptide represents an excellent model system not only for examining how the folding rate of naturally occurring helices differs from that of the widely studied alanine-based peptides, but also for estimating the folding speed limit of (small) helical proteins. Our results show that the T-jump induced relaxation rate of L9:41-74 is significantly slower than that of alanine-based peptides. For example, at 11 degrees C its relaxation time constant is about 2 micros, roughly seven times slower than that of SPE(5), an alanine-rich peptide of similar chain length. In addition, our results show that the folding rate of a truncated version of L9:41-74 is even slower. Taken together, these results suggest that individual alpha-helical segments in proteins may fold on a time scale that is significantly slower than the folding time of alanine-based peptides. Furthermore, we argue that the relaxation rate of L9:41-74 measured between 8 and 45 degrees C provides a realistic estimate of the ultimate folding rate of (small) helical proteins over this temperature range.  相似文献   
143.
Obtaining a matching in a graph satisfying a certain objective is an important class of graph problems. Matching algorithms have received attention for several decades. However, while there are efficient algorithms to obtain a maximum weight matching, not much is known about the maximum weight maximum cardinality, and maximum cardinality maximum weight matching problems for general graphs. Our contribution in this work is to show that for bounded weight input graphs one can obtain an algorithm for both maximum weight maximum cardinality (for real weights), and maximum cardinality maximum weight matching (for integer weights) by modifying the input and running the existing maximum weight matching algorithm. Also, given the current state of the art in maximum weight matching algorithms, we show that, for bounded weight input graphs, both maximum weight maximum cardinality, and maximum cardinality maximum weight matching have algorithms of similar complexities to that of maximum weight matching. Subsequently, we also obtain approximation algorithms for maximum weight maximum cardinality, and maximum cardinality maximum weight matching.   相似文献   
144.
Vanadium(V) oxidation of D ‐glucose shows first‐order dependence on D ‐glucose, vanadium(V), H+, and HSO. These observations remain unaltered in the presence of externally added surfactants. The effect of the cationic surfactant (i.e., N‐cetylpyridinium chloride [CPC]), anionic surfactant (i.e., sodium dodecyl sulfate [SDS]), and neutral surfactant (i.e., Trion X‐100 [TX‐100]) has been studied. CPC inhibits the reactions, whereas SDS and TX‐100 accelerate the reaction to different extents. Observed effects have been explained by considering the hydrophobic and electrostatic interaction between the surfactants and reactants. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 282–286, 2008  相似文献   
145.
Employing 1-(2-methoxybenzyl)-2-(2-methoxyphenyl)-1H-benzimidazole (bpb) as a monodentate ligand, a new greenish-blue copper(II) complex, [Cu(bpb)2(NO3)2] (1a), has been synthesized. 1a has been characterized analytically and spectroscopically. The X-ray crystal structure of 1a reveals that it adopts a cis disposition with respect to the ligands. The solid state structure of 1a is stabilized by intramolecular offset face-to-face ππ stacking. Non-covalent supramolecular edge-to-face C–H?π interactions with neighboring molecules give 1-D supramolecular chains that further lead to the formation of an assembled 3-D supramolecular metal-organic framework via hydrogen bonding interactions. 1a shows blue fluorescence most likely due to intramolecular offset face-to-face ππ stacking. At room temperature, 1a is one-electron paramagnetic. It shows a rhombic EPR spectrum with g1 = 2.12, g2 = 2.42, and g3 = 2.52 in the solid state at liquid nitrogen temperature. In cyclic voltammetry, 1a displays a one-electron oxidative Cu(II)/Cu(III) couple. Our DFT calculations, corroborate the observed experimental results of 1a.  相似文献   
146.
Production of hydrogen is a challenging task and have significant impact in the recent scenario. The alumina supported iron oxide nanoparticle synthesized using non‐ionic surfactant Triton‐X was found very effective for steady production of hydrogen through methane decomposition reaction. The high surface area, easily reducible catalyst calcined at 500 °C and 800 °C temperature showed steady activity towards methane decomposition reaction. At a higher reaction temperature there was catalyst deactivation. The doping of MgO facilitated particle growth rendering the poor catalytic activity. The TPR study showed that reducibility of TPR was difficult in presence of MgO additive. The formation of Fe? Mg? Al solid solution confirmed by XRD study was found mainly responsible for the lower catalytic activity. The bamboo‐shaped carbon nanotube formed from 20 % Fe/Al2O3 catalyst which is mainly because of the poor wetting property of quasi‐liquid metal and carbon nanotube.  相似文献   
147.
Using DFT calculations, this study investigates the pressure-dependent variations of elastic anisotropy in the following SnO2 phases: rutile-type (tetragonal; P42/mnm), CaCl2-type (orthorhombic; Pnnm)-, α-PbO2-type (orthorhombic; Pbcn)- and fluorite-type (cubic; Fm-3m). Experimentally, these polymorphs undergo sequential structural transitions from rutile-type → CaCl2-type → α-PbO2-type → fluorite-type with increasing pressure at 11.35, 14.69 and 58.22 GPa, respectively. We estimate the shear anisotropy (A1 and A3) on {1?0?0} and {0?0?1} crystallographic planes of the tetragonal phase and (A1, A2 and A3) on {1?0?0}, {0?1?0} and {0?0?1} crystallographic planes of the orthorhombic phases. The rutile-type phase shows strongest shear anisotropy on the {0?0?1} planes (A2 > 4.8), and the degree of anisotropy increases nonlinearly with pressure. In contrast, the anisotropy is almost absent on the {1?0?0} planes (ie A1 ~ 1) irrespective of the pressure. The CaCl2-type phase exhibits similar shear anisotropy behaviour preferentially on {0?0?1} (A3 > 5), while A1 and A2 remain close to 1. The α-PbO2-type phase shows strikingly different elastic anisotropy characterised by a reversal in anisotropy (A3 > 1 to < 1) with increasing pressure at a threshold value of 38 GPa. We provide electronic density of states and atomic configuration to account for this pressure-dependent reversal in shear anisotropy. Our study also analyses the directional Young’s moduli for the tetragonal and orthorhombic phases as a function of pressure. Finally, we estimate the band gaps of these four SnO2 phases as a function of pressure which are in agreement with the previous results.  相似文献   
148.
One-pot reactions of cadmium(II) perchlorate/nitrate, Schiff bases (pbap/pfap) and pseudohalides (sodium azide/ammonium thiocyanate) in a 2:1:4 molar ratio in MeOH–MeCN solvent mixtures at room temperature result in a dinuclear compound [Cd2(pbap)(OH2)2(N3)4] (1) [pbap = N-(1-pyridin-2-ylbenzylidene)-N-[2-(4-{2-[(1-pyridin-2-ylbenzylidene)amino]ethyl}piperazin-1-yl)ethyl]amine] and a polymeric compound [Cd2(pfap)(μ1,3-NCS)(μ1,3-SCN)(NCS)2]n (2) [pfap = N-(1-pyridin-2-ylformylidene)-N-[2-(4-{2-[(1-pyridin-2ylformylidene)amino]ethyl}piperazin-1-yl)ethyl]-amine]. X-ray crystal structural analyses reveal a bis(tridentate) congregation behaviour of the hexadentate blocker (pbap/pfap) encapsulating two metal centers. Each cadmium(II) center in 1 and 2 is in a distorted octahedral geometry with CdN5O and CdN5S chromophores, respectively. In 1, the dinuclear units participate in intermolecular O–H?N hydrogen bonding between bound water O atoms and terminal azide N atoms, in combination with C–H?π interactions, resulting in a 3D supramolecular network with an intramolecular Cd?Cd distance of 6.473(2) Å. In the crystal lattice, the covalent 1D chain of 2 is further engaged in face-to-face π?π interactions from two terminal pyridine rings, which stabilizes the chain with an intradimer Cd?Cd separation of 6.640(5) Å. Both the complexes display intraligand 1(π–π) fluorescence and intraligand 3(π–π) phosphorescence in glassy solutions.  相似文献   
149.
The widely different LC-MS response observed for many structurally different compounds limits the use of LC-MS in full scan detection mode for quantitative determination of drugs and metabolites without using reference standard. The recently introduced nanospray ionization (NSI) technique shows comparable MS response for some compounds under non-LC-MS conditions. However, in the presence of numerous endogenous compounds commonly associated with biological samples such as urine, plasma, and bile, LC-MS is required to separate, detect, identify, and measure individual analytes. An LC-NSI-MS system was devised and the MS response obtained in this system for a variety of pharmaceutical drugs and their metabolites. The set-up involves two high-performance liquid chromatography (HPLC) systems, a chip-based NSI source and a quadrupole-time-of-flight (Q-TOF) mass spectrometer. Herein this is referred to as the response normalized-liquid chromatography NSI-MS (RNLC-NSI-MS) system. One HPLC unit performs the analytical separation, while the other unit adds solvent post-column with an exact reverse of the mobile phase composition such that the final composition entering the NSI source is isocratic throughout the entire HPLC run. The data obtained from four different structural classes of compounds [vicriviroc (VCV), desloratadine (DL), tolbutamide, and cocaine] and their metabolites indicate that by maintaining the solvent composition unchanged across the HPLC run, the influence of the solvent environment on the ionization efficiency is minimized. In comparison to responses obtained from radiochromatograms, responses from conventional LC-ESI-MS overestimated the VCV and DL responses, respectively, by 6- and 20-fold. Although VCV and DL responses obtained using LC-NSI-MS are within 2- to 6-fold from the respective radiochromatographic responses, the response normalization modification results in nearly uniform LC-NSI-MS response for all compounds evaluated.  相似文献   
150.
Thio-ether bonds in the cysteinyl side chain of peptides, formed with the most commonly used cysteine blocking reagent iodoacetamide, after conversion to sulfoxide, releases a neutral fragment mass in a low-energy MS/MS experiment in the gas phase of the mass spectrometer [6]. In this study, we show that the neutral loss fragments produced from the mono-oxidized thio-ether bonds (sulfoxide) in peptides, formed by alkyl halide or double-bond containing cysteine blocking reagents are different under low-energy MS/MS conditions. We have evaluated the low-energy fragmentation patterns of mono-oxidized modified peptides with different cysteine blocking reagents, such as iodoacetamide, 3-maleimidopropionic acid, and 4-vinylpyridine using FTICR-MS. We propose that the mechanisms of gas-phase fragmentation of mono-oxidized thio-ether bonds in the side chain of peptides, formed by iodoacetamide and double-bond containing cysteine blocking reagents, maleimide and vinylpyridine, are different because of the availability of acidic beta-hydrogens in these compounds. Moreover, we investigated the fragmentation characteristics of mono-oxidized thio-ether bonds within the peptide sequence to develop novel mass-spectrometry identifiable chemical cross-linkers. This methionine type of oxidized thio-ether bond within the peptide sequence did not show anticipated low-energy fragmentation. Electron capture dissociation (ECD) of the side chain thio-ether bond containing oxidized peptides was also studied. ECD spectra of the oxidized peptides showed a greater extent of peptide backbone cleavage, compared with CID spectra. This fragmentation information is critical to researchers for accurate data analysis of this undesired modification in proteomics research, as well as other methods that may utilize sulfoxide derivatives.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号