Nature of contact angle hysteresis is discussed basing on the literature data (Colloids Surf. A 189 (2001) 265) of dynamic advancing and receding contact angles of n-alkanes and n-alcohols on a very smooth surface of 1,1,2,-trichloro-1,2,2,-trifluoroethane (FC-732) film deposited on a silicon plate. The authors considered the liquid absorption and/or retention (swelling) processes responsible for the observed hysteresis. In this paper hysteresis is considered to be due to the liquid film left behind the drop during retreating of its contact line. Using the contact angle hysteresis an approach is suggested for evaluation of the solid surface free energy. Molecular spacing and the film structure are discussed to explain the difference in n-alkanes and n-alcohols behaviour as well as to explain the difference between dispersion free energy gamma(s)(d) and total surface free energy gamma(s)(tot) of FC-732, as determined from the advancing contact angles and the hysteresis, respectively. 相似文献
The synthesis and characterization of several new phosphorus-containing partially lower rim substituted derivatives of 5,11,17,23-tetra(t-butyl) calix(4)arene (I) and 5,11,17,23-tetra(t-octyl)calix(4)arene (II), namely 5,11,17,23-tetra(t-butyl)-25,27-dihydroxy-26,28-bis(diphenylphosphinoyl-oxy) calix(4)arene (IV); 5,11,17,23-tetra(t-butyl)-25-hydroxy-26,27,28-tris(tetramethyldiamido-phosphinoyl-oxy) calix(4)arene (Vb); 5,11,17,23-tetra(t-butyl)-25,27-dihydroxy-26,28-bis(dimethyl-phosphinoyl-methoxy) calix(4)arene (VI); 5,11,17,23-tetra (t-octyl)-25,27-dihydroxy-26,28-bis(dimethyl-phosphinoyl-methoxy) calix(4)arene (VII) are reported. The structure of the synthesized calix(4)arene derivatives are identified and confirmed by elemental analysis, IR, 1H, 13C, 31P{1H} NMR spectroscopy and mass spectrometry as and X-ray crystallographic analysis of 5,11,17,23-tetra(t-butyl)-25,27-dihydroxy-26,28-bis(dimethyl-phosphinoyl-methoxy) calix(4)arene VI. According to the NMR spectra, all calix(4)arenes are in cone conformation. 相似文献
Hybrid nanocomposite films of ITO-coated, self-assembled porous nanostructures of tungsten trioxide (WO(3)) were fabricated using electrochemical anodization and sputtering. The morphology and chemical nature of the porous nanostructures were studied by Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS), respectively. The photoelectrochemical (PEC) properties of WO(3) porous nanostructures were studied in various alkaline electrolytes and compared with those of titania nanotubes. A new type of alkaline electrolyte containing a mixture of NaOH and KOH was proposed for the first time to the best of our knowledge and shown to improve the photocurrent response of the photoanodes. Here, we show that both the WO(3) nanostructures and titania nanotubes (used for comparison) exhibit superior photocurrent response in the mixture of NaOH and KOH than in other alkaline electrolytes. The WO(3) porous nanostructures suffered from surface corrosion resulting in a huge reduction in the photocurrent density as a function of time in the alkaline electrolytes. However, with a protective coating of ITO (100 nm), the surface corrosion of WO(3) porous nanostructures reduced drastically. A tremendous increase in the photocurrent density of as much as 340% was observed after the ITO was applied to the WO(3) porous nanostructures. The results suggest that the hybrid ITO/WO(3) nanocomposites could be potentially coupled with titania nanotubes in a multi-junction PEC cell to expand the light absorption capability in the solar spectrum for water splitting to generate hydrogen. 相似文献
The lithium diisopropylamide-mediated 1,2-elimination of 1-bromocyclooctene to provide cyclooctyne is investigated using approximately 50 potentially hemilabile polyethers and amino ethers. Rate laws for selected ligands reveal chelated monomer-based pathways. The dependence of the rates on ligand structure shows that anticipated rate accelerations based on the gem-dimethyl effect are nonexistent and that substituents generally retard the reaction. With the aid of semiempirical and DFT computational studies, the factors influencing chelation are discussed. It seems that severe buttressing within chelates of the substitutionally rich ligands precludes a net stabilization of the chelates relative to nonchelated (eta(1)-solvated) forms. One ligand-MeOCH(2)CH(2)NMe(2)-appears to promote elimination uniquely by a higher-coordinate monomer-based pathway. 相似文献
A transition‐metal‐free reductive hydroxymethylation reaction has been developed, enabling the preparation of tetrahydroisoquinolines bearing C4‐quaternary centers from the corresponding isoquinolines. Deuterium labelling studies and control experiments enable a potential mechanism to be elucidated which features a key Cannizzaro‐type reduction followed by an Evans–Tishchenko reaction. When isoquinolines featuring a proton at the 4‐position are used, a tandem methylation‐hydroxymethylation occurs, leading to the formation of 2 new C?C bonds in one pot. 相似文献
Complexes of osmium tetroxide with nitrogen ligands were developed and used in our laboratory as probes of the DNA structure. Here, we show that the complex of osmium tetroxide with 2,2'-bipyridine (Os,bipy) can be used for modification and electrochemical detection of proteins at neutral pH. Salmon luteinizing hormone (SLH) containing two tryptophan (Trp) residues and human luteinizing hormone (HLH) containing one Trp were modified by Os,bipy and measured by differential pulse adsorptive stripping voltammetry (DPAdSV) at a hanging mercury drop electrode (HMDE). The intensity of the DPAdSV catalytic signals corresponded to the number of Trp residues in the peptide molecule. Decreasing pH of the background electrolyte from 6.6 to 3.8 led to the increase of DPAdSV signals, suggesting that at pH 3.8, the DPAdSV detection limit might be well below 1 ng/ml. Our results suggest that Os,bipy is potentially useful for chemical modification of proteins. 相似文献
Aluminosilicates can present different structures such as crystalline true zeolite molecular sieves or amorphous silica–aluminas. With a large surface area available, both can be involved as catalysts, adsorbents or catalyst supports, and the determination of their surface acidic properties is an important parameter in the study of such materials.
The number, strength and strength distribution of the acidic sites were determined using microcalorimetry linked to a volumetric line. Ammonia was used as a basic probe molecule. The adsorption temperatures ranged from 353 K up to 473 K. The samples consisted of two amorphous silica–aluminas (Si/Al ≈ 6.5) and three microporous zeolites H-β, H-ZSM-5 and H-MCM-22 with similar Si/Al ratios (Si/Al ≈ 13).
The differential heats of ammonia adsorption versus coverage and the corresponding isotherms are given. The H-ZSM-5, H-MCM-22, H-β samples display a plateau of constant adsorption heats near 150 kJ mol−1, while the silica–alumina samples present continuously decreasing heats from 150 kJ mol−1 at zero coverage to 40 kJ mol−1 at high coverage, due to their surface heterogeneity. For amorphous silica–aluminas, the number of acid sites is dependent of the aluminum distribution at the surface.
The differences observed in the adsorption behavior of ammonia over the three zeolites arise from differences in their morphology, i.e. the total free volumes, pore geometries and electric field gradients at the adsorption sites. The adsorption isosteres have also been calculated from the adsorption isotherms, and the isosteric heats of adsorption have been compared with the heats measured by calorimetry. 相似文献
Manufacturers support the concept of traceability. However, only a small number of the medically relevant measurands can be traced to the highest metrological order. In many cases, the measured substances are heterogeneous mixtures where traceability can be established only to either an international conventional reference measurement procedure or to a manufacturers own in-house reference system. The traceability concept needs to be seen in the context that the results of medical laboratories are not an aim per se, but are meant to provide useful medical information to clinicians, and that pre- and post-analytical steps may also contribute significantly to errors. There is a need for the further development of suitable reference measurement systems, but in view of the multitude of tasks and limited resources, priorities need to be set.Presented at BERM-9 – 9th International Symposium on Biological and Environmental Reference Materials, 15–19 June 2003, Berlin, Germany 相似文献
Tissue engineering research is increasingly relying on the use of advanced cultivation technologies that provide rigorously-controlled cell microenvironments. Herein, we describe the features of a micro-fabricated Multi-Shear Perfusion Bioreactor (MSPB) designed to deliver up to six different levels of physiologically-relevant shear stresses (1-13 dyne cm(-2)) to six cell constructs simultaneously, during a single run. To attain a homogeneous fluid flow within each construct, flow-distributing nets photo-etched with a set of openings for fluid flow were placed up- and down-stream from each construct. Human umbilical vein endothelial cells (HUVECs) seeded in alginate scaffolds within the MSPB and subjected to three different levels of shear stress for 24 h, responded accordingly by expressing three different levels of the membranal marker Intercellular Adhesion Molecule 1 (ICAM-1) and the phosphorylated endothelial nitric oxide synthetase (eNOS). A longer period of cultivation, 17 d, under two different levels of shear stress resulted in different lengths of cell sprouts within the constructs. Collectively, the HUVEC behaviour within the different constructs confirms the feasibility of using the MSPB system for simultaneously imposing different shear stress levels, and for validating the flow regime in the bioreactor vessel as assessed by the computational fluid dynamic (CFD) model. 相似文献