全文获取类型
收费全文 | 15947篇 |
免费 | 643篇 |
国内免费 | 145篇 |
专业分类
化学 | 10310篇 |
晶体学 | 69篇 |
力学 | 330篇 |
综合类 | 1篇 |
数学 | 3028篇 |
物理学 | 2997篇 |
出版年
2023年 | 145篇 |
2022年 | 291篇 |
2021年 | 351篇 |
2020年 | 428篇 |
2019年 | 498篇 |
2018年 | 382篇 |
2017年 | 296篇 |
2016年 | 608篇 |
2015年 | 575篇 |
2014年 | 556篇 |
2013年 | 931篇 |
2012年 | 1090篇 |
2011年 | 1302篇 |
2010年 | 684篇 |
2009年 | 572篇 |
2008年 | 929篇 |
2007年 | 835篇 |
2006年 | 847篇 |
2005年 | 783篇 |
2004年 | 616篇 |
2003年 | 485篇 |
2002年 | 448篇 |
2001年 | 258篇 |
2000年 | 183篇 |
1999年 | 188篇 |
1998年 | 161篇 |
1997年 | 171篇 |
1996年 | 179篇 |
1995年 | 149篇 |
1994年 | 117篇 |
1993年 | 107篇 |
1992年 | 93篇 |
1991年 | 84篇 |
1990年 | 73篇 |
1989年 | 46篇 |
1988年 | 49篇 |
1987年 | 53篇 |
1986年 | 50篇 |
1985年 | 80篇 |
1984年 | 61篇 |
1983年 | 45篇 |
1982年 | 70篇 |
1981年 | 60篇 |
1980年 | 55篇 |
1979年 | 49篇 |
1978年 | 54篇 |
1977年 | 52篇 |
1976年 | 53篇 |
1974年 | 40篇 |
1973年 | 34篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
Alexander Nickolaevich Kholodov 《Acta Appl Math》1990,19(1):1-54
We determine all orthogonal polynomials having Boas-Buck generating functions g(t)(xf(t)), where% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacqqHOo% qwcaGGOaGaamiDaiaacMcacqGH9aqpruqqYLwySbacfaGaa8hiamaa% BeaaleaacaaIWaaabeaakiaadAeacaqGGaWaaSbaaSqaaiaabgdaae% qaaOGaaeikaiaadggacaGGSaGaa8hiaiaadshacaqGPaGaaeilaiaa% bccacaqGGaGaaeiiaiaadggacqGHGjsUcaaIWaGaaiilaiaa-bcacq% GHsislcaaIXaGaaiilaiaa-bcacqGHsislcaaIYaGaaiilaiablAci% ljaacUdaaeaacqqHOoqwcaGGOaGaamiDaiaacMcacqGH9aqpcaWFGa% WaaSraaSqaaiaaicdaaeqaaOGaamOraiaabccadaWgaaWcbaGaaeOm% aaqabaGccaGGOaWaaSqaaSqaaiaaigdaaeaacaaIZaaaaOGaaiilai% aa-bcadaWcbaWcbaGaaGOmaaqaaiaaiodaaaGccaGGSaGaa8hiaiaa% dshacaGGPaGaa8hiamaaBeaaleaacaaIWaaabeaakiaadAeacaqGGa% WaaSbaaSqaaiaabkdaaeqaaOGaaeikamaaleaaleaacaaIYaaabaGa% aG4maaaakiaacYcacaWFGaWaaSqaaSqaaiaaisdaaeaacaaIZaaaaO% Gaaiilaiaa-bcacaWG0bGaaiykaiaacYcacaWFGaWaaSraaSqaaiaa% icdaaeqaaOGaamOraiaabccadaWgaaWcbaGaaeOmaaqabaGccaGGOa% WaaSqaaSqaaiaaisdaaeaacaaIZaaaaOGaaiilaiaa-bcadaWcbaWc% baGaaGynaaqaaiaaiodaaaGccaGGSaGaa8hiaiaadshacaGGPaGaai% 4oaaqaaiabfI6azjaacIcacaWG0bGaaiykaiabg2da9iaa-bcadaWg% baWcbaGaaGimaaqabaGccaWGgbGaaeiiamaaBaaaleaacaqGZaaabe% aakiaacIcadaWcbaWcbaGaaGymaaqaaiaaisdaaaGccaGGSaGaa8hi% amaaleaaleaacaaIYaaabaGaaGinaaaakiaacYcacaWFGaWaaSqaaS% qaaiaaiodaaeaacaaI0aaaaOGaaiilaiaa-bcacaWG0bGaaiykaiaa% -bcadaWgbaWcbaGaaGimaaqabaGccaWGgbGaaeiiamaaBaaaleaaca% qGZaaabeaakiaabIcadaWcbaWcbaGaaGOmaaqaaiaaisdaaaGccaGG% SaGaa8hiamaaleaaleaacaaIZaaabaGaaGinaaaakiaacYcacaWFGa% WaaSqaaSqaaiaaiwdaaeaacaaI0aaaaOGaaiilaiaa-bcacaWG0bGa% aiykaiaacYcaaeaadaWgbaWcbaGaaGimaaqabaGccaWGgbGaaeiiam% aaBaaaleaacaqGZaaabeaakiaacIcadaWcbaWcbaGaaG4maaqaaiaa% isdaaaGccaGGSaGaa8hiamaaleaaleaacaaI1aaabaGaaGinaaaaki% aacYcacaWFGaWaaSqaaSqaaiaaiAdaaeaacaaI0aaaaOGaaiilaiaa% -bcacaWG0bGaaiykaiaacYcacaGGUaGaa8hiamaaBeaaleaacaaIWa% aabeaakiaadAeacaqGGaWaaSbaaSqaaiaabodaaeqaaOGaaeikamaa% leaaleaacaaI1aaabaGaaGinaaaakiaacYcacaWFGaWaaSqaaSqaai% aaiAdaaeaacaaI0aaaaOGaaiilaiaa-bcadaWcbaWcbaGaaG4naaqa% aiaaisdaaaGccaGGSaGaa8hiaiaadshacaGGPaGaaiOlaaaaaa!C1F3!\[\begin{gathered}\Psi (t) = {}_0F{\text{ }}_{\text{1}} {\text{(}}a, t{\text{), }}a \ne 0, - 1, - 2, \ldots ; \hfill \\\Psi (t) = {}_0F{\text{ }}_{\text{2}} (\tfrac{1}{3}, \tfrac{2}{3}, t) {}_0F{\text{ }}_{\text{2}} {\text{(}}\tfrac{2}{3}, \tfrac{4}{3}, t), {}_0F{\text{ }}_{\text{2}} (\tfrac{4}{3}, \tfrac{5}{3}, t); \hfill \\\Psi (t) = {}_0F{\text{ }}_{\text{3}} (\tfrac{1}{4}, \tfrac{2}{4}, \tfrac{3}{4}, t) {}_0F{\text{ }}_{\text{3}} {\text{(}}\tfrac{2}{4}, \tfrac{3}{4}, \tfrac{5}{4}, t), \hfill \\{}_0F{\text{ }}_{\text{3}} (\tfrac{3}{4}, \tfrac{5}{4}, \tfrac{6}{4}, t),. {}_0F{\text{ }}_{\text{3}} {\text{(}}\tfrac{5}{4}, \tfrac{6}{4}, \tfrac{7}{4}, t). \hfill \\\end{gathered}\]We also determine all Sheffer polynomials which are orthogonal on the unit circle. The formula for the product of polynomials of the Boas-Buck type is obtained. 相似文献
82.
Summary A method to generate an accurate approximation to a singular solution of a system of complex analytic equations is presented. Since manyreal systems extend naturally tocomplex analytic systems, this porvides a method for generating approximations to singular solutions to real systems. Examples include systems of polynomials and systems made up of trigonometric, exponential, and polynomial terms. The theorem on which the method is based is proven using results from several complex variables. No special conditions on the derivatives of the system, such as restrictions on the rank of the Jacobian matrix at the solution, are required. The numerical method itself is developed from techniques of homotopy continuation and 1-dimensional quadrature. A specific implementation is given, and the results of numerical experiments in solving five test problems are presented. 相似文献
83.
The Sample Average Approximation Method Applied to Stochastic Routing Problems: A Computational Study 总被引:1,自引:0,他引:1
Bram Verweij Shabbir Ahmed Anton J. Kleywegt George Nemhauser Alexander Shapiro 《Computational Optimization and Applications》2003,24(2-3):289-333
The sample average approximation (SAA) method is an approach for solving stochastic optimization problems by using Monte Carlo simulation. In this technique the expected objective function of the stochastic problem is approximated by a sample average estimate derived from a random sample. The resulting sample average approximating problem is then solved by deterministic optimization techniques. The process is repeated with different samples to obtain candidate solutions along with statistical estimates of their optimality gaps.We present a detailed computational study of the application of the SAA method to solve three classes of stochastic routing problems. These stochastic problems involve an extremely large number of scenarios and first-stage integer variables. For each of the three problem classes, we use decomposition and branch-and-cut to solve the approximating problem within the SAA scheme. Our computational results indicate that the proposed method is successful in solving problems with up to 21694 scenarios to within an estimated 1.0% of optimality. Furthermore, a surprising observation is that the number of optimality cuts required to solve the approximating problem to optimality does not significantly increase with the size of the sample. Therefore, the observed computation times needed to find optimal solutions to the approximating problems grow only linearly with the sample size. As a result, we are able to find provably near-optimal solutions to these difficult stochastic programs using only a moderate amount of computation time. 相似文献
84.
Periodica Mathematica Hungarica - Let X 1,X 2,... be a sequence of independent and identically distributed random variables, and put % MATHTYPE!MTEF!2!1!+-%... 相似文献
85.
John?J.?BenedettoEmail author Wojciech?Czaja Przemystaw?Gadziński Alexander?M.?Powell 《Journal of Geometric Analysis》2003,13(2):239-254
For any positive real numbers A, B, and d satisfying the conditions
, d>2, we construct a Gabor orthonormal basis for L2(ℝ), such that the generating function g∈L2(ℝ) satisfies the condition:∫ℝ|g(x)|2(1+|x|
A
)/log
d
(2+|x|)dx < ∞ and
. 相似文献
86.
Let X be an anisotropic projective quadric over a field F of characteristic not 2. The essential dimension dimes(X) of X, as defined by Oleg Izhboldin, is dimes(X)=dim(X)-i(X) +1, where i(X) is the first Witt index of X (i.e., the Witt index of X over its function field).Let Y be a complete (possibly singular) algebraic variety over F with all closed points of even degree and such that Y has a closed point of odd degree over F(X). Our main theorem states that dimes(X)dim(Y) and that in the case dimes(X)=dim(Y) the quadric X is isotropic over F(Y).Applying the main theorem to a projective quadric Y, we get a proof of Izhboldins conjecture stated as follows: if an anisotropic quadric Y becomes isotropic over F(X), then dimes(X)dimes(Y), and the equality holds if and only if X is isotropic over F(Y). We also solve Knebuschs problem by proving that the smallest transcendence degree of a generic splitting field of a quadric X is equal to dimes(X). To the memory of Oleg Izhboldin 相似文献
87.
Alexander Goldenshluger 《Journal of multivariate analysis》2003,84(1):40-60
The problem of optimal prediction in the stochastic linear regression model with infinitely many parameters is considered. We suggest a prediction method that outperforms asymptotically the ordinary least squares predictor. Moreover, if the random errors are Gaussian, the method is asymptotically minimax over ellipsoids in ?2. The method is based on a regularized least squares estimator with weights of the Pinsker filter. We also consider the case of dynamic linear regression, which is important in the context of transfer function modeling. 相似文献
88.
LetF be a class of groups andG a group. We call a set Σ of subgroups ofG aG-covering subgroup system for the classF (or directly aF-covering subgroup system ofG) ifG ∈F whenever every subgroup in Σ is inF. In this paper, we provide some nontrivial sets of subgroups of a finite groupG which are simultaneouslyG-covering subgroup systems for the classes of supersoluble and nilpotent groups.
Research of the first author is supported by the NNSF of China (Grant No. 10171086) and QLGCF of Jiangsu Province and a Croucher
Fellowship of Hong Kong.
Research of the second author is partially supported by a UGC (HK) grant #2060176 (2001/2002). 相似文献
89.
Alexander Koldobsky 《Advances in Mathematics》2003,177(1):105-114
The Busemann-Petty problem asks whether symmetric convex bodies in with smaller central hyperplane sections necessarily have smaller n-dimensional volume. The solution has recently been completed, and the answer is affirmative if n?4 and negative if n?5. In this article we present a short proof of the affirmative result and its generalization using the Funk-Hecke formula for spherical harmonics. 相似文献
90.
We prove that, in Euclidean space, any nonnegatively curved, compact, smoothly immersed hypersurface lies outside the convex hull of its boundary, provided the boundary satisfies certain required conditions. This gives a convex hull property, dual to the classical one for surfaces with nonpositive curvature. A version of this result in the nonsmooth category is obtained as well. We show that our boundary conditions determine the topology of the surface up to at most two choices. The proof is based on uniform estimates for radii of convexity of these surfaces under a clipping procedure, a noncollapsing convergence theorem, and a gluing procedure. 相似文献