首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15453篇
  免费   637篇
  国内免费   145篇
化学   10044篇
晶体学   50篇
力学   323篇
综合类   1篇
数学   2926篇
物理学   2891篇
  2023年   141篇
  2022年   290篇
  2021年   348篇
  2020年   419篇
  2019年   495篇
  2018年   379篇
  2017年   291篇
  2016年   597篇
  2015年   564篇
  2014年   548篇
  2013年   913篇
  2012年   1078篇
  2011年   1276篇
  2010年   677篇
  2009年   562篇
  2008年   908篇
  2007年   830篇
  2006年   838篇
  2005年   772篇
  2004年   605篇
  2003年   470篇
  2002年   436篇
  2001年   239篇
  2000年   170篇
  1999年   181篇
  1998年   155篇
  1997年   164篇
  1996年   167篇
  1995年   144篇
  1994年   113篇
  1993年   101篇
  1992年   85篇
  1991年   76篇
  1990年   64篇
  1989年   40篇
  1988年   44篇
  1987年   47篇
  1986年   44篇
  1985年   69篇
  1984年   57篇
  1983年   34篇
  1982年   58篇
  1981年   49篇
  1980年   44篇
  1979年   40篇
  1978年   44篇
  1977年   41篇
  1976年   47篇
  1974年   34篇
  1973年   29篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
971.
Protein microarrays are rapidly emerging as valuable tools in creating combinatorial cell culture systems where inducers of cellular differentiation can be identified in a rapid and multiplexed fashion. In the present study, protein microarraying was combined with photoresist lithography to enable printing of extracellular matrix (ECM) protein arrays while precisely controlling "on-the-spot" cell-cell interactions. In this surface engineering approach, the micropatterned photoresist layer formed on a glass substrate served as a temporary stencil during the microarray printing, defining the micrometer-scale dimensions and the geometry of the cell-adhesion domains within the printed protein spots. After removal of the photoresist, the glass substrates contained micrometer-scale cell-adhesive regions that were encoded within 300 or 500 microm diameter protein domains. Fluorescence microscopy and atomic force microscopy (AFM) were employed to characterize protein micropatterns. When incubated with micropatterned surfaces, hepatic (HepG2) cells attached on 300 or 500 mum diameter protein spots; however, the extent of cell-cell contacts within each spot varied in accordance with dimensions of the photoresist stencil, from single cells attaching on 30 microm diameter features to multicell clusters residing on 100 or 200 microm diameter regions. Importantly, the photoresist removal process was shown to have no detrimental effects on the ability of several ECM proteins (collagens I, II, and IV and laminin) to support functional hepatic cultures. The micropatterning approach described here allows for a small cell population seeded onto a single cell culture substrate to be exposed to multiple scenarios of cell-cell and cell-surface interactions in parallel. This technology will be particularly useful for high-throughput screening of biological stimuli required for tissue specification of stem cells or for maintenance of differentiated phenotype in scarce primary cells.  相似文献   
972.
This paper describes a novel approach of controlling cell-surface interactions through an electrochemical "switching" of biointerfacial properties of optically transparent microelectrodes. The indium tin oxide (ITO) microelectrodes, fabricated on glass substrates, were modified with poly(ethylene glycol) (PEG) silane to make glass and ITO regions resistant to protein and cell adhesion. Cyclic voltammetry, with potassium ferricyanide serving as a redox reporter molecule, was used to monitor electron transfer across the electrolyte-ITO interface. PEG silane modification of ITO correlated with diminished electron transfer, judged by the disappearance of ferricyanide redox activity. Importantly, application of reductive potential (-1.4 V vs Ag/AgCl reference) corresponded with reappearance of typical ferricyanide redox peaks, thus pointing to desorption of an insulating PEG silane layer. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) characterization of the silanized ITO surfaces after electrical stimulation indicated complete removal of the silane layer. Significantly, electrical stimulation allowed to "switch" chosen electrodes from nonfouling to protein-adhesive while leaving other ITO and glass regions protected by a nonfouling PEG silane layer. The spatial and temporal control of biointerfacial properties afforded by our approach was utilized to micropattern proteins and cells and to construct micropatterned co-cultures. In the future, control of the biointerfacial properties afforded by this novel approach may allow the organization of multiple cell types into precise geometric configurations in order to create better in vitro mimics of cellular complexity of the native tissues.  相似文献   
973.
Ferric tetraamido macrocyclic ligand (TAML)-based catalysts [Fe{C(6)H(4)-1,2-(NCOCMe(2)NCO)(2)CR(2)}(OH(2))]PPh(4) [1; R = Me (a), Et (b)] are oxidized by m-chloroperoxybenzoic acid at -40 °C in acetonitrile containing trace water in two steps to form Fe(V)oxo complexes (2a,b). These uniquely authenticated Fe(V)(O) species comproportionate with the Fe(III) starting materials 1a,b to give μ-oxo-(Fe(IV))(2) dimers. The comproportionation of 1a-2a is faster and that of 1b-2b is slower than the oxidation by 2a,b of sulfides (p-XC(6)H(4)SMe) to sulfoxides, highlighting a remarkable steric control of the dynamics. Sulfide oxidation follows saturation kinetics in [p-XC(6)H(4)SMe] with electron-rich substrates (X = Me, H), but changes to linear kinetics with electron-poor substrates (X = Cl, CN) as the sulfide affinity for iron decreases. As the sulfide becomes less basic, the Fe(IV)/Fe(III) ratio at the end of reaction for 2b suggests a decreasing contribution of concerted oxygen-atom transfer (Fe(V) → Fe(III)) concomitant with increasing electron transfer oxidation (Fe(V) → Fe(IV)). Fe(V) is more reactive toward PhSMe than Fe(IV) by 4 orders of magnitude, a gap even larger than that known for peroxidase Compounds I and II. The findings reinforce prior work typecasting TAML activators as faithful peroxidase mimics.  相似文献   
974.
The solid lithium-ion electrolyte "Li(7)La(3)Zr(2)O(12)" (LLZO) with a garnet-type structure has been prepared in the cubic and tetragonal modification following conventional ceramic syntheses routes. Without aluminium doping tetragonal LLZO was obtained, which shows a two orders of magnitude lower room temperature conductivity than the cubic modification. Small concentrations of Al in the order of 1 wt% were sufficient to stabilize the cubic phase, which is known as a fast lithium-ion conductor. The structure and ion dynamics of Al-doped cubic LLZO were studied by impedance spectroscopy, dc conductivity measurements, (6)Li and (7)Li NMR, XRD, neutron powder diffraction, and TEM precession electron diffraction. From the results we conclude that aluminium is incorporated in the garnet lattice on the tetrahedral 24d Li site, thus stabilizing the cubic LLZO modification. Simulations based on diffraction data show that even at the low temperature of 4 K the Li ions are blurred over various crystallographic sites. This strong Li ion disorder in cubic Al-stabilized LLZO contributes to the high conductivity observed. The Li jump rates and the activation energy probed by NMR are in very good agreement with the transport parameters obtained from electrical conductivity measurements. The activation energy E(a) characterizing long-range ion transport in the Al-stabilized cubic LLZO amounts to 0.34 eV. Total electric conductivities determined by ac impedance and a four point dc technique also agree very well and range from 1 × 10(-4) Scm(-1) to 4 × 10(-4) Scm(-1) depending on the Al content of the samples. The room temperature conductivity of Al-free tetragonal LLZO is about two orders of magnitude lower (2 × 10(-6) Scm(-1), E(a) = 0.49 eV activation energy). The electronic partial conductivity of cubic LLZO was measured using the Hebb-Wagner polarization technique. The electronic transference number t(e-) is of the order of 10(-7). Thus, cubic LLZO is an almost exclusive lithium ion conductor at ambient temperature.  相似文献   
975.
In this work, the formation of two- and three-component supramolecular systems based on cone, partial cone, 1,3-alternate stereoisomers of heteroditopic "hosts": p-tert-butylthiacalix[4]arene containing 4-amidopyridine fragments with silver(I) cations and dicarboxylic acids in liquid and solid phases were studied by UV spectroscopy, dynamic light scattering, and atomic force microscopy methods. It has been shown that these macrocycles are coreceptors, capable of simultaneously binding silver(I) cations, dicarboxylic acids (oxalic, malonic, succinic, maleic, fumaric acids), and hydroxyl acids (glycol, tartaric acids). For the first time, by the dynamic light scattering method, it has been shown that the conformation of p-tert-butyl thiacalix[4]arenes significantly affects the type of three-component system formed: cone is characterized by the formation of cascade systems; for partial cone, intermediate systems; and for the 1,3-alternate stereoisomers, three types of three-component systems (cascade, intermediate, and commutative) were observed.  相似文献   
976.
Much effort has focussed in recent years on probing the interactions of small molecules with amyloid fibrils and other protein aggregates. Understanding and control of such interactions are important for the development of diagnostic and therapeutic strategies in situations where protein aggregation is associated with disease. In this perspective article we give an overview over the toolbox of biophysical methods for the study of such amyloid-small molecule interactions. We discuss in detail two recently developed techniques within this framework: linear dichroism, a promising extension of the more traditional spectroscopic techniques, and biosensing methods, where surface-bound amyloid fibrils are exposed to solutions of small molecules. Both techniques rely on the measurement of physical properties that are very directly linked to the binding of small molecules to amyloid aggregates and therefore provide an attractive route to probe these important interactions.  相似文献   
977.
Explicitly correlated CCSD(T)-F12b calculations have been carried out with systematic sequences of correlation consistent basis sets to determine accurate near-equilibrium potential energy surfaces for the X(2)Π and a(4)Σ(-) electronic states of the CCN radical. After including contributions due to core correlation, scalar relativity, and higher order electron correlation effects, the latter utilizing large-scale multireference configuration interaction calculations, the resulting surfaces were employed in variational calculations of the ro-vibronic spectra. These calculations also included the use of accurate spin-orbit and dipole moment matrix elements. The resulting ro-vibronic transition energies, including the Renner-Teller sub-bands involving the bending mode, agree with the available experimental data to within 3 cm(-1) in all cases. Full sets of spectroscopic constants are reported using the usual second-order perturbation theory expressions. Integrated absorption intensities are given for a number of selected vibronic band origins. A computational procedure similar to that used in the determination of the potential energy functions was also utilized to predict the formation enthalpy of CCN, ΔH(f)(0K) = 161.7 ± 0.5 kcal/mol.  相似文献   
978.
A rapid method for the simultaneous determination of Ac-EEMQRR-amide and H(2)N-EEMQRR-amide in cosmetic products was developed and evaluated. This analytical procedure involved extracting samples with 0.1:0.1:85:15 (v:v) trifluoroacetic acid (TFA):formic acid:acetonitrile (ACN):water and determination by hydrophilic interaction liquid chromatography with tandem mass spectrometry (HILIC-MS/MS). Samples showing serious ion suppression were further cleaned up using HILIC-SPE prior to HILIC-MS/MS analysis. Stable isotopically labeled peptides, corresponding to the above two peptides, were used as internal standards to correct for loss of recovery and matrix effects. Electrospray ionization (ESI) in the positive mode was used. The linear range was 2.0-1000 ng/mL for Ac-EEMQRR-amide and 25.0-2500 ng/mL for H(2)N-EEMQRR-amide. Thirteen commercial products were analyzed for the two peptides using this method. The amounts of Ac-EEMQRR-amide in the samples ranged from none detected to 42.3 μg/g. H(2)N-EEMQRR-amide was not detected in any of the samples. The recoveries for Ac-EEMQRR-amide and H(2)N-EEMQRR-amide ranged from 85% to 110% and 84% to 119%, respectively, at the spiking level of 30 μg/g.  相似文献   
979.
The electrochemistry of several difluoroboradiaza-s-indacene (BODIPY) compounds lacking substituent groups in the meso (8)- and/or 3 (α)-positions was investigated. Chemical and electrochemical dimerization was demonstrated, and the dimerization depended on the character of substitution. The chemical dimerization was achieved by oxidative coupling using FeCl(3) in CH(2)Cl(2) at 0 °C. The electrochemical dimerization proceeded via anodic oxidation to the radical cation and monitored by both cyclic voltammetry (CV) and electrogenerated chemiluminescence (ECL). An available open 3-position was important for the formation of the dimer. The resulting 3,3'-dimer produced a second peak in the CV oxidation and also the appearance of a longer wavelength ECL peak at 656 nm, which is considerably shifted from the parent peak at 532 nm. No dimerization was seen for BODIPY molecules in which only the meso 8-position was unsubstituted, either by chemical or electrochemical means, demonstrating that dimerization occurs at position 3.  相似文献   
980.
Monosaccharide derivatives such as xylose, fucose, N-acetylglucosamine (GlcNAc), N-acetylgalactosamine (GlaNAc), glucuronic acid, iduronic acid, and N-acetylneuraminic acid (Neu5Ac) are important components of eukaryotic glycans. The present work details development of force-field parameters for these monosaccharides and their covalent connections to proteins via O-linkages to serine or threonine sidechains and via N-linkages to asparagine sidechains. The force field development protocol was designed to explicitly yield parameters that are compatible with the existing CHARMM additive force field for proteins, nucleic acids, lipids, carbohydrates, and small molecules. Therefore, when combined with previously developed parameters for pyranose and furanose monosaccharides, for glycosidic linkages between monosaccharides, and for proteins, the present set of parameters enables the molecular simulation of a wide variety of biologically-important molecules such as complex carbohydrates and glycoproteins. Parametrization included fitting to quantum mechanical (QM) geometries and conformational energies of model compounds, as well as to QM pair interaction energies and distances of model compounds with water. Parameters were validated in the context of crystals of relevant monosaccharides, as well NMR and/or x-ray crystallographic data on larger systems including oligomeric hyaluronan, sialyl Lewis X, O- and N-linked glycopeptides, and a lectin:sucrose complex. As the validated parameters are an extension of the CHARMM all-atom additive biomolecular force field, they further broaden the types of heterogeneous systems accessible with a consistently-developed force-field model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号