首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1272篇
  免费   45篇
  国内免费   4篇
化学   961篇
晶体学   2篇
力学   21篇
数学   202篇
物理学   135篇
  2024年   1篇
  2023年   14篇
  2022年   51篇
  2021年   75篇
  2020年   36篇
  2019年   32篇
  2018年   26篇
  2017年   13篇
  2016年   41篇
  2015年   39篇
  2014年   43篇
  2013年   70篇
  2012年   82篇
  2011年   93篇
  2010年   50篇
  2009年   35篇
  2008年   84篇
  2007年   96篇
  2006年   65篇
  2005年   72篇
  2004年   64篇
  2003年   55篇
  2002年   45篇
  2001年   26篇
  2000年   5篇
  1999年   13篇
  1998年   10篇
  1997年   9篇
  1996年   9篇
  1995年   6篇
  1994年   6篇
  1993年   2篇
  1992年   3篇
  1991年   5篇
  1990年   4篇
  1989年   4篇
  1988年   5篇
  1987年   3篇
  1986年   3篇
  1985年   7篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1980年   4篇
  1979年   2篇
  1978年   3篇
  1977年   1篇
  1976年   1篇
排序方式: 共有1321条查询结果,搜索用时 0 毫秒
31.
Although a plethora of chemistries have been developed to selectively decorate protein molecules, novel strategies continue to be reported with the final aim of improving selectivity and mildness of the reaction conditions, preserve protein integrity, and fulfill all the increasing requirements of the modern applications of protein conjugates. The targeting of the protein N-terminal alpha-amine group appears a convenient solution to the issue, emerging as a useful and unique reactive site universally present in each protein molecule. Herein, we provide an updated overview of the methodologies developed until today to afford the selective modification of proteins through the targeting of the N-terminal alpha-amine. Chemical and enzymatic strategies enabling the selective labeling of the protein N-terminal alpha-amine group are described.  相似文献   
32.
Interferonopathies are rare genetic conditions defined by systemic inflammatory episodes caused by innate immune system activation in the absence of pathogens. Currently, no targeted drugs are authorized for clinical use in these diseases. In this work, we studied the contribution of sulforaphane (SFN), a cruciferous-derived bioactive molecule, in the modulation of interferon-driven inflammation in an immortalized human hepatocytes (IHH) line and in two healthy volunteers, focusing on STING, a key-component player in interferon pathway, interferon signature modulation, and GSTM1 expression and genotype, which contributes to SFN metabolism and excretion. In vitro, SFN exposure reduced STING expression as well as interferon signature in the presence of the pro-inflammatory stimulus cGAMP (cGAMP 3 h vs. SFN+cGAMP 3 h p value < 0.0001; cGAMP 6 h vs. SFN+cGAMP 6 h p < 0.001, one way ANOVA), restoring STING expression to the level of unstimulated cells. In preliminary experiments on healthy volunteers, no appreciable variations in interferon signature were identified after SFN assumption, while only in one of them, presenting the GSTM1 wild type genotype related to reduced SFN excretion, could a downregulation of STING be recorded. This study confirmed that SFN inhibits STING-mediated inflammation and interferon-stimulated genes expression in vitro. However, only a trend towards the downregulation of STING could be reproduced in vivo. Results obtained have to be confirmed in a larger group of healthy individuals and in patients with type I interferonopathies to define if the assumption of SFN could be useful as supportive therapy.  相似文献   
33.
Some novel cobalt diphenylphosphine complexes were synthesized by reacting cobalt(II) chloride with (2-methoxyethyl)diphenylphosphine, (2-methoxyphenyl)diphenylphosphine, and 2-(1,1-dimethylpropyl)-6-(diphenylphosphino)pyridine. Single crystals suitable for X-ray diffraction studies were obtained for the first two complexes, and their crystal structure was determined. The novel compounds were then used in association with methylaluminoxane (MAO) for the polymerization of 1,3-butadiene, and their behavior was compared with that exhibited in the polymerization of the same monomer by the systems CoCl2(PnPrPh2)2/MAO and CoCl2(PPh3)2/MAO. Some significant differences were observed depending on the MAO/Co ratio used, and a plausible interpretation for such a different behavior is proposed.  相似文献   
34.
Cosmetics has recently focused on biobased skin-compatible materials. Materials from natural sources can be used to produce more sustainable skin contact products with enhanced bioactivity. Surface functionalization using natural-based nano/microparticles is thus a subject of study, aimed at better understanding the skin compatibility of many biopolymers also deriving from biowaste. This research investigated electrospray as a method for surface modification of cellulose tissues with chitin nanofibrils (CNs) using two different sources—namely, vegetable (i.e., from fungi), and animal (from crustaceans)—and different solvent systems to obtain a biobased and skin-compatible product. The surface of cellulose tissues was uniformly decorated with electrosprayed CNs. Biological analysis revealed that all treated samples were suitable for skin applications since human dermal keratinocytes (i.e., HaCaT cells) successfully adhered to the processed tissues and were viable after being in contact with released substances in culture media. These results indicate that the use of solvents did not affect the final cytocompatibility due to their effective evaporation during the electrospray process. Such treatments did not also affect the characteristics of cellulose; in addition, they showed promising anti-inflammatory and indirect antimicrobial activity toward dermal keratinocytes in vitro. Specifically, cellulosic substrates decorated with nanochitins from shrimp showed strong immunomodulatory activity by first upregulating then downregulating the pro-inflammatory cytokines, whereas nanochitins from mushrooms displayed an overall anti-inflammatory activity via a slight decrement of the pro-inflammatory cytokines and increment of the anti-inflammatory marker. Electrospray could represent a green method for surface modification of sustainable and biofunctional skincare products.  相似文献   
35.
Prunus mahaleb L. fruit has long been used in the production of traditional liqueurs. The fruit also displayed scavenging and reducing activity, in vitro. The present study focused on unravelling peripheral and central protective effects, antimicrobial but also anti-COVID-19 properties exerted by the water extract of P. mahaleb. Anti-inflammatory effects were studied in isolated mouse colons exposed to lipopolysaccharide. Neuroprotection, measured as a blunting effect on hydrogen-peroxide-induced dopamine turnover, was investigated in hypothalamic HypoE22 cells. Antimicrobial effects were tested against different Gram+ and Gram- bacterial strains. Whereas anti-COVID-19 activity was studied in lung adenocarcinoma H1299 cells, where the gene expression of ACE2 and TMPRSS2 was measured after extract treatment. The bacteriostatic effects induced on Gram+ and Gram- strains, together with the inhibition of COX-2, TNFα, HIF1α, and VEGFA in the colon, suggest the potential of P. mahaleb water extract in contrasting the clinical symptoms related to ulcerative colitis. The inhibition of the hydrogen peroxide-induced DOPAC/DA ratio indicates promising neuroprotective effects. Finally, the downregulation of the gene expression of ACE2 and TMPRSS2 in H1299 cells, suggests the potential to inhibit SARS-CoV-2 virus entry in the human host. Overall, the results support the valorization of the local cultivation of P. mahaleb.  相似文献   
36.
The binding of a set of 10 triphenoxypyridine derivatives to two serine proteases, factor Xa and trypsin, has been used to analyze factors related to sampling and convergence in free energy calculations based on molecular dynamics simulation techniques. The inhibitors investigated were initially proposed as part of the Critical Assessment of Techniques for Free Energy Evaluation (CATFEE) project for which no experimental results nor any assessment of the predictions submitted by various groups have ever been published. The inhibitors studied represent a severe challenge for explicit free energy calculations. The mutations from one compound to another involve up to 19 atoms, the creation and annihilation of net charge and several alternate binding modes. Nevertheless, we demonstrate that it is possible to obtain highly converged results (+/- 5-10 kJ/mol) even for such complex multi-atom mutations by simulating on a nanosecond time scale. This is achieved by using soft-core potentials to facilitate the creation and deletion of atoms and by a careful choice of mutation pathway. The results show that given modest computational resources, explicit free energy calculations can be successfully applied to realistic problems in drug design.  相似文献   
37.
The structure of the title S‐alkyl­ated iso­thio­semicarbazide, C12H15N3OS, was determined by single‐crystal diffractometry and compared with the structures of other compounds containing the S‐alkyl­thio­semicarbazide moiety. Such structures cluster into two groups, according to the different orientation of the –SR group with respect to the hydrazine N atom of the thio­semicarbazide. The cis arrangement is preferred by most mol­ecules in the solid state, in spite of the possibility of intramolecular N—H?N interactions in the opposite orientation.  相似文献   
38.
39.
Clorobiocin (clo) and novobiocin (nov) are potent inhibitors of bacterial DNA gyrase. The two substances differ in the substitution pattern at C-8' of the aminocoumarin ring, carrying a chlorine atom or a methyl group, respectively. By gene inactivation, clo-hal was identified as the gene of the halogenase responsible for the introduction of the chlorine atom of clorobiocin. Inactivation of cloZ did not affect clorobiocin formation, showing that this ORF is not essential for clorobiocin biosynthesis. Expression of the methyltransferase gene novO in the clo-hal(-) mutant led to the very efficient formation of a hybrid antibiotic containing a methyl group instead of a chlorine atom at C-8'. Comparison of the antibacterial activity of clorobiocin analogs with -Cl, -H, or -CH(3) at C-8' showed that chlorine leads to 8-fold higher activity than hydrogen and to 2-fold higher activity than a methyl group.  相似文献   
40.
This paper proposes the use of the least-squares support vector machine (LS-SVM) as an alternative multivariate calibration method for the simultaneous quantification of some common adulterants (starch, whey or sucrose) found in powdered milk samples, using near-infrared spectroscopy with direct measurements by diffuse reflectance. Due to the spectral differences of the three adulterants a nonlinear behavior is present when all groups of adulterants are in the same data set, making the use of linear methods such as partial least squares regression (PLSR) difficult. Excellent models were built using LS-SVM, with low prediction errors and superior performance in relation to PLSR. These results show it possible to built robust models to quantify some common adulterants in powdered milk using near-infrared spectroscopy and LS-SVM as a nonlinear multivariate calibration procedure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号