首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8956篇
  免费   518篇
  国内免费   71篇
化学   6074篇
晶体学   98篇
力学   300篇
数学   1179篇
物理学   1894篇
  2023年   67篇
  2022年   346篇
  2021年   354篇
  2020年   265篇
  2019年   353篇
  2018年   318篇
  2017年   241篇
  2016年   441篇
  2015年   300篇
  2014年   457篇
  2013年   843篇
  2012年   583篇
  2011年   592篇
  2010年   443篇
  2009年   389篇
  2008年   422篇
  2007年   380篇
  2006年   335篇
  2005年   241篇
  2004年   252篇
  2003年   181篇
  2002年   227篇
  2001年   104篇
  2000年   136篇
  1999年   93篇
  1998年   60篇
  1997年   75篇
  1996年   62篇
  1995年   48篇
  1994年   63篇
  1993年   58篇
  1992年   51篇
  1991年   34篇
  1990年   35篇
  1989年   42篇
  1988年   42篇
  1987年   36篇
  1986年   22篇
  1985年   52篇
  1984年   47篇
  1983年   36篇
  1982年   40篇
  1981年   39篇
  1980年   54篇
  1979年   26篇
  1978年   23篇
  1977年   24篇
  1976年   23篇
  1975年   20篇
  1973年   19篇
排序方式: 共有9545条查询结果,搜索用时 15 毫秒
991.
The acylation of three cellulose samples by acetic anhydride, Ac2O, in the solvent system LiCl/N,N-dimethylacetamide, DMAc (4 h, 110 °C), has been revisited in order to investigate the dependence of the reaction efficiency on the structural characteristics of cellulose, and its aggregation in solution. The cellulose samples employed included microcrystalline, MCC; mercerized cotton linters, M-cotton, and mercerized sisal, M-sisal. The reaction efficiency expresses the relationship between the degree of substitution, DS, of the ester obtained, and the molar ratio Ac2O/AGU (anhydroglucose unit of the biopolymer); 100% efficiency means obtaining DS = 3 at Ac2O/AGU = 3. For all celluloses, the dependence of DS on Ac2O/AGU is described by an exponential decay equation: DS = DSo − Ae−[(Ac2O/AGU)/B]; (A) and (B) are regression coefficients, and DSo is the calculated maximum degree of substitution, achieved under the conditions of each experiment. Values of (B) are clearly dependent on the cellulose employed: B(M-cotton) > B(M-sisal) > B(MCC); they correlate qualitatively with the degree of polymerization of cellulose, and linearly with the aggregation number, Nagg, of the dissolved biopolymer, as calculated from static light scattering measurements: (B) = 1.709 + 0.034 Nagg. To our knowledge, this is the first report on the latter correlation; it shows the importance of the physical state of dissolved cellulose, and serves to explain, in part, the need to use distinct reaction conditions for MCC and fibrous celluloses, in particular Ac2O/AGU, time, temperature.  相似文献   
992.
Picosecond and femtosecond X-ray absorption spectroscopy is used to probe the changes of the solvent shell structure upon electron abstraction of aqueous iodide using an ultrashort laser pulse. The transient L(1,3) edge EXAFS at 50 ps time delay points to the formation of an expanded water cavity around the iodine atom, in good agreement with classical and quantum mechanical/molecular mechanics (QM/MM) molecular dynamics (MD) simulations. These also show that while the hydrogen atoms pointed toward iodide, they predominantly point toward the bulk solvent in the case of iodine, suggesting a hydrophobic behavior. This is further confirmed by quantum chemical (QC) calculations of I(-)/I(0)(H(2)O)(n=1-4) clusters. The L(1) edge sub-picosecond spectra point to the existence of a transient species that is not present at 50 ps. The QC calculations and the QM/MM MD simulations identify this transient species as an I(0)(OH(2)) complex inside the cavity. The simulations show that upon electron abstraction most of the water molecules move away from iodine, while one comes closer to form the complex that lives for 3-4 ps. This time is governed by the reorganization of the main solvation shell, basically the time it takes for the water molecules to reform an H-bond network. Only then is the interaction with the solvation shell strong enough to pull the water molecule of the complex toward the bulk solvent. Overall, much of the behavior at early times is determined by the reorientational dynamics of water molecules and the formation of a complete network of hydrogen bonded molecules in the first solvation shell.  相似文献   
993.
Thermogravimetric (TG) investigations of organotin(IV) carboxylates with the general formula RmSnL4−m (where R=CH3, C2H5, n‐C4H9, C6H5, cyclo‐C6H11, n‐C8H17, m=2, 3, and L=para‐nitrophenylethanoate anion) have been performed. Derivative thermogravimetry (DTG) and differential thermal analysis (DTA) techniques, Horowitz‐Metzger method and the fundamental thermodynamic relations are used to evaluate the thermokinetic parameters of each thermal degradation pattern. Results reveal that the thermal stability is functional to Sn C and Sn O bonds. In the case of R2SnL2, activation energy, reaction order and pre‐exponential factor associated with the bulk degradation processes increase as the alkane chain length increases. Hence, Oct2SnL2 is thermally more stable than Bu2SnL2, which in turn is more resistant to thermal dissociation than Et2SnL2. The same phenomenon is not observed for R3SnL compounds because their degradation is highly irregular. Furthermore, R2SnL2 has larger values of kinetic parameters than those of corresponding triorganotin(IV) para‐nitrophenylethanotes. Thermodynamic parameters of these compounds also reinforce the above facts.  相似文献   
994.
Antimony(III) complexes of thioamides [thioamides=thiourea (Tu), N,N′‐dimethylthiourea (Dmtu), tetramethylthiourea (Tmtu), imidazolidine‐2‐thione (Imt) and diazinane‐2‐thione (Diaz)] with the general formulae, Sb(thione)nCl3 (n=1, 2, 2.5, 3) were prepared and characterized by elemental analysis, IR and NMR (1H, 13C) spectroscopic methods. The spectral data of the complexes are consistent with the coordination of the thiones to antimony(III). The crystal structure of one of them, {[Sb(Imt)2Cl2]2(μ2‐Imt)}Cl2 ( 1 ), was determined by X‐ray crystallography, which shows that the complex is dinuclear consisting of two [Sb(Imt)2Cl2] units bridged by an Imt molecule. In 1 , the antimony atom is bonded to two chlorine atoms, two sulfur atoms of coordinated Imt molecules and one sulfur atom of a bridging Imt molecule. The antimony environment can be considered to be distorted octahedral with one Cl? ion weakly bound to antimony.  相似文献   
995.
A proton-transfer (charge transfer) complex formed on the reaction between 2,6-diaminopyridine (donor) and picric acid (acceptor) was synthesized and characterized by FTIR, (1)H NMR, thermal and elemental analysis. The crystal structure determined by single-crystal X-ray diffraction indicates that cation and anion are joined together by strong N(+)-H- -O(-) type hydrogen bonds. The hydrogen-bonded charge transfer (HBCT) complex was screened for its pharmacology such as antimicrobial activity against various fungal and bacterial strains and Calf thymus DNA-binding. The results showed that HBCT complex (100μg/ml) exhibited good antibacterial antifungal activity as that of standard antibiotics Tetracycline and Nystatin. A molecular frame work through H-bonding interactions between neighboring moieties is found to be responsible for high melting point of resulting complex. This has been attributed to the formation of 1:1 HBCT complex.  相似文献   
996.
A dispersive liquid-liquid microextraction (DLLME) procedure coupled with GC/MS detection is described for preconcentration and determination of some organophosphorus and azole group pesticides from water samples. Experimental conditions affecting the DLLME procedure were optimized by means of an experimental design. A mixture of 60 microL chlorobenzene (extraction solvent) and 750 microL acetonitrile (disperser solvent), 3.5 min extraction time, and 7.5 mL aqueous sample volume were chosen for the best recovery by DLLME. The linear range was 1.6-32 microg/L. The LOD ranged from 48.8 to 68.7 ng/L. The RSD values for organophosphorus and azole group pesticides at spiking levels of 3, 6, and 9 microg/L in water samples were in the range of 1.1-12.8%. The applicability and accuracy of the developed method were determined by analysis of spiked water samples, and the recoveries of the analyzed pesticides from artesian, stream, and tap waters at spiking levels of 3, 6, and 9 microg/L were 89.3-105.6, 89.5-103.0, and 92.0-111.3%, respectively.  相似文献   
997.
Quantum chemical calculations were performed at the DFT level for the boron-capped dichloro-substituted tris-dioximate iron(II) clathrochelate and cyclohexane and 1,4-dioxane radicals. The 1,4-dioxane and cyclohexane radicals are nucleophiles towards the macrobicyclic precursor studied. The reaction of this clathrochelate with cyclohexane in the presence of a free-radical initiator resulted in substitution of a chlorine atom by a cyclohexyl fragment. The compound obtained was characterized by elemental analysis, IR spectroscopy, 1H and 13C{1H} NMR, and single-crystal X-ray diffraction data.  相似文献   
998.
The reactions of ethyl (5-carbamoyl-3H-imidazol-4-yl)dithiocarbamate with phenacyl bromides afford the S-alkylation products as a mixture of E/Z-isomers, which undergo cyclization to 5-(2-oxo-4-arylthiazol-3-yl)-1H-imidazole-4-carboxamides under the action of a base.  相似文献   
999.
By condensation of 1-amino-2-hydroxynaphthalene with furoyl chloride in 1-methyl-2-pyrrolidone 2-(2-furyl)naphtho[1,2-d]oxazole was synthesized and brought into electrophylic substitution reactions: nitration, bromination, sulfonation, formylation, and acylation. The substituent commonly was introduced into the position 5 of the furan ring, but at the nitration and bromination electrophilic attack was directed both at the furan ring and the naphthalene fragment.  相似文献   
1000.
The detailed kinetics of the multistep mechanism of the Au(III) ion reduction into gold clusters have been investigated by radiation chemistry methods in 2-propanol. In particular, a discussion on the steady state radiolysis dose-dependence of the yields concludes to a comproportionation reaction of nascent gold atoms Au(0) with excess Au(III) ions into Au(II) and Au(I). This reaction should be achieved through Au(III) consumption before the coalescence of atoms Au(0) into gold clusters may occur. Then gold clusters catalyze the reduction of Au(I) by 2-propanol. It was also found that a long-lived Au(II) dimer, (Au(II))(2), was transiently formed according to the quantitative analysis of time-resolved absorbance signals obtained by pulse radiolysis. Then the disproportionation of Au(II) is intramolecular in the dimer instead of intermolecular, as usually reported. The yields, reaction rate constants, time-resolved spectra, and molar extinction coefficients are reported for the successive one-electron reduction steps, involving especially the transient species, such as Au(II), (Au(II))(2), and Au(I). The processes are discussed in comparison with other solvents and other metal ions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号