首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   150篇
  免费   7篇
  国内免费   3篇
化学   98篇
晶体学   3篇
力学   3篇
数学   36篇
物理学   20篇
  2023年   2篇
  2022年   2篇
  2021年   5篇
  2020年   4篇
  2019年   7篇
  2018年   4篇
  2017年   5篇
  2016年   7篇
  2015年   2篇
  2014年   4篇
  2013年   13篇
  2012年   14篇
  2011年   19篇
  2010年   11篇
  2009年   9篇
  2008年   4篇
  2007年   11篇
  2006年   4篇
  2005年   1篇
  2004年   1篇
  2003年   7篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   3篇
  1997年   2篇
  1996年   4篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
排序方式: 共有160条查询结果,搜索用时 31 毫秒
121.
The reactions of hexachlorocyclotriphosphazatriene N3P3Cl6 ( 1 ) with the sodium salts of 2,4,6‐trimethylphenol ( 2a ), 4‐tert‐butyl‐2‐methylphenol ( 2b ), 2‐tert‐butyl‐4‐methylphenol ( 2c ) have been investigated, and monoaryloxy‐substituted phosphazenes N3P3Cl5OAr ( 3–5 ) were obtained. © 2005 Wiley Periodicals, Inc. 16:308–310, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20127  相似文献   
122.
In this paper, we study a nonlinear evolution partial differential equation, namely the (3+1)-dimensional Zakharov–Kuznetsov equation. Kudryashov method together with Jacobi elliptic function method is used to obtain the exact solutions of the (3+1)-dimensional Zakharov–Kuznetsov equation. Furthermore, the conservation laws of the (3+1)-dimensional Zakharov–Kuznetsov equation are obtained by using the multiplier method.  相似文献   
123.
Coumestrol (3,9-dihydroxy-6-benzofuran [3,2-c] chromenone) as a phytoestrogen and polyphenolic compound is a member of the Coumestans family and is quite common in plants. In this study, antiglaucoma, antidiabetic, anticholinergic, and antioxidant effects of Coumestrol were evaluated and compared with standards. To determine the antioxidant activity of coumestrol, several methods—namely N,N-dimethyl-p-phenylenediamine dihydrochloride radical (DMPD•+)-scavenging activity, 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulphonate) radical (ABTS•+)-scavenging activity, 1,1-diphenyl-2-picrylhydrazyl radical (DPPH)-scavenging activity, potassium ferric cyanide reduction ability, and cupric ion (Cu2+)-reducing activity—were performed. Butylated hydroxyanisole (BHA), Trolox, α-Tocopherol, and butylated hydroxytoluene (BHT) were used as the reference antioxidants for comparison. Coumestrol scavenged the DPPH radical with an IC50 value of 25.95 μg/mL (r2: 0.9005) while BHA, BHT, Trolox, and α-Tocopherol demonstrated IC50 values of 10.10, 25.95, 7.059, and 11.31 μg/mL, respectively. When these results evaluated, Coumestrol had similar DPPH-scavenging effect to BHT and lower better than Trolox, BHA and α-tocopherol. In addition, the inhibition effects of Coumestrol were tested against the metabolic enzymes acetylcholinesterase (AChE), butyrylcholinesterase (BChE), carbonic anhydrase II (CA II), and α-glycosidase, which are associated with some global diseases such as Alzheimer’s disease (AD), glaucoma, and diabetes. Coumestrol exhibited Ki values of 10.25 ± 1.94, 5.99 ± 1.79, 25.41 ± 1.10, and 30.56 ± 3.36 nM towards these enzymes, respectively.  相似文献   
124.
Providing access to the benefits of additive manufacturing technologies in tissue engineering, vinyl esters recently came into view as appropriate replacements for (meth)acrylates as precursors for photopolymers. Their low cytotoxicity and good biocompatibility as well as favorable degradation behavior are their main assets. Suffering from rather poor mechanical properties, particularly in terms of toughness, several improvements have been made over the last years. Especially, thiol–ene chemistry has been investigated to overcome those shortcomings. In this study, we focused on additional means to further improve the toughness of an already established biocompatible vinyl ester‐thiol formulation, eligible for digital light processing‐based stereolithography. All molecules were based on poly(ε‐caprolactone) as building block and the formulations were tested regarding their reactivity and the resulting mechanical properties. They all performed well as toughness enhancer, ultimately doubling the impact resistance of the reference system. © 2018 The Authors. Journal of Polymer Science Part A: Polymer Chemistry published by Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 110–119  相似文献   
125.
The normal mode (linear) stability of zonal flows of a nondivergent fluid on a rotating sphere is considered. The spherical harmonics are used as the basic functions on the sphere. The stability matrix representing in this basis the vorticity equation operator linearized about a zonal flow is analyzed in detail using the recurrent formula derived for the nonlinear triad interaction coefficients. It is shown that the zonal flow having the form of a Legendre polynomial Pn(μ) of degree n is stable to infinitesimal perturbations of every invariant set Im with |m| ≥ n. For each zonal number m, Im is here the span of all the spherical harmonics $Y^{m}_{k}(x)$, whose degree k is greater than or equal to m. It is also shown that such small-scale perturbations are stable not only exponentially, but also algebraically. © 1998 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 14: 649–665, 1998  相似文献   
126.
The reactions of Cl3PN P(O)Cl2 ( 1 ) with primary and secondary amines have been studied. The following monophosphazenes, (RRN)3PN P(O)(NRR)2, and bis(phosphinoyl)amines, [(RRN)2P(O)]2NH were isolated: NRR = NHCH2Ph, Net2, NH(CH2)2CH3 groups for monophosphazenes, and Net2, NH(CH2)2CH3 for phosphinoyl amines. The unexpected geminal phosphazene, Cl(RRN)2PN P(O)Cl2, {RRN = N[CH(CH3)2]2}, was also obtained in moderate yield. The spectral data (IR, 1H, 13C, and 31P NMR, and MS) are presented. The structure of 1-(dichlorophosphinyl)-2-chloro-2,2-bis(diisopropylamino)phosphazene ( 5 ) was determined by X-ray crystallography. The basicities of these and related compounds in nonaqueous nitrobenzene solution were obtained by potentiometric titration.  相似文献   
127.
The synthesis of poly[(oligoethylene glycol) methyl ether acrylate] [poly(OEGA)] brushes was achieved via reversible addition‐fragmentation chain transfer (RAFT) polymerization and used to selectively immobilize streptavidin proteins. Initially, gold surfaces were modified with a trithiocarbonate‐based RAFT chain transfer agent (CTA) by using an ester reaction involving a gold substrate modified with 11‐mercapto‐1‐undecanol and bis(2‐butyric acid)trithiocarbonate. poly(OEGA) brushes were then prepared via RAFT‐mediated polymerization from the surface‐immobilized CTA. The immobilization of CTA on the gold surface and the subsequent polymer formation were followed by ellipsometry, X‐ray photoelectron spectroscopy, grazing angle‐Fourier transform infrared spectroscopy, atomic force microscopy, and water contact‐angle measurements. RAFT‐mediated polymerization method gave CTA groups to grafted poly(OEGA) termini, which can be converted to various biofunctional groups. The terminal carboxylic acid groups of poly(OEGA) chains were functionalized with amine‐functionalized biotin units to provide selective attachment points for streptavidin proteins. Fluorescence microscopy measurements confirmed the successful immobilization of streptavidin molecules on the polymer brushes. It is demonstrated that this fabrication method may be successfully applied for specific protein recognition and immobilization. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
128.
129.

Silicon wafers are significantly utilized in integrated circuits and memory devices for the fabrication of novel semiconductor devices. As a result, a substantial amount of silicon wastes are generated every year. But recycling process of pure silicon waste is expensive with an additional problem related to chemical waste generation. Thus, the possibility of inevitable silicon waste conversion into potential nanostructures is not only beneficial for the semiconductor industry but also resolves current e-waste pollution. Hence, we successfully achieved hexagonal silicon carbide (SiC) nanowires under a strategic combination of waste silicon wafers and graphite powder by robust high-energy ball milling and heat treatment approaches. Structural, morphological, chemical, and optical properties of SiC nanowires are systematically studied by XRD, SEM, TEM, XPS, and optical absorbance. This facile experimental technique recognized the value of SiC nanowire generation for exploring multifunctional photoelectrochemical (PEC) water splitting and antibacterial activity. Accordingly, SiC nanowires achieved a photocurrent density of about 0.21 mA cm−2 vs. Ag/AgCl, which demonstrates enhanced light absorption capacity under reduced charge carrier recombination. Moreover, SiC nanowires prevailed decrement in the charge carrier resistance (27.53 Ω) under light state compared to the dark state (26.76 Ω). Specifically, potentiodynamic studies revealed superior exchange current density (− 3.17 mA cm−2), Tafel slope (80.1 mV dec−1), and limiting diffusion current density (− 1.49 mA cm−2) under light state than the dark state. Also, these results are certainly applicable for superior antibacterial activity against E. coli and L. monocytogenes about 90% and 75% under visible light, respectively.

  相似文献   
130.
Simple, accurate, precise and fully validated analytical methods for the simultaneous determination of salmeterol xinafoate and fluticasone propionate in combined dosage forms have been developed. These drugs were exposed to thermal, photolytic, hydrolytic and oxidative stress conditions, and the stressed samples were detected by the proposed method. Additionally, pK a values of three ionizable drugs (salmeterol xinafoate, fluticasone propionate and thioridazine) were determined using by the dependence of the retention factor on pH of the mobile phase. The effect of the mobile phase composition on the ionization constant was studied by measuring the pK a in different acetonitrile-water mixtures, ranging between 50 and 65% (v/v) using LC-UV method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号