首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   195篇
  免费   0篇
化学   131篇
力学   1篇
数学   52篇
物理学   11篇
  2022年   2篇
  2020年   2篇
  2018年   3篇
  2017年   2篇
  2015年   2篇
  2014年   3篇
  2013年   2篇
  2012年   3篇
  2011年   6篇
  2010年   4篇
  2008年   4篇
  2007年   5篇
  2005年   6篇
  2004年   9篇
  2003年   2篇
  2002年   5篇
  2001年   5篇
  1999年   3篇
  1998年   8篇
  1996年   3篇
  1995年   2篇
  1993年   10篇
  1992年   6篇
  1991年   3篇
  1990年   5篇
  1989年   7篇
  1988年   2篇
  1987年   6篇
  1986年   4篇
  1985年   5篇
  1984年   5篇
  1983年   5篇
  1982年   2篇
  1980年   2篇
  1979年   2篇
  1978年   11篇
  1976年   3篇
  1974年   3篇
  1973年   4篇
  1972年   4篇
  1971年   3篇
  1970年   2篇
  1969年   4篇
  1959年   1篇
  1958年   1篇
  1956年   2篇
  1935年   1篇
  1929年   2篇
  1923年   2篇
  1884年   1篇
排序方式: 共有195条查询结果,搜索用时 15 毫秒
111.
The effect of dressing a fiber on the wetting of it by a polyethylene melt is studied. The interconnection between the value of the adhesive strength and the residual stresses at the boundary between the glass fiber and polymer is analyzed. The role of the residual stresses during use of the glass-reinforced material and the part played by the chemical interaction between the polyethylene and the fiber in the water-resistant composition obtained in this way is analyzed.D. I. Mendeleev Moscow Chemicotechnical Institute. Translated from Mekhanika Polimerov, No. 6, pp. 1048–1052, November–December, 1972.  相似文献   
112.
113.
114.
115.
116.
117.
Liu J  Wang Z  Meng X  Shao Z  Ozygus B  Ding A  Weber H 《Optics letters》2003,28(23):2330-2332
Passive Q-switching performance was found to be greatly improved by use of a new Nd-doped mixed vanadate crystal Nd:Gd0.64Y0.36VO4 compared with that achieved with Nd:YVO4 and Nd:GdVO4. At an absorbed pump power of 12 W, an average output power of 2.78 W was obtained at a pulse repetition frequency of 15.4 kHz with an optical conversion efficiency of 23.2%, and the slope efficiency was determined to be 45.5%. The resulting pulse energy, peak power, and pulse width were 181 microJ, 26.6 kW, and 6.8 ns, respectively.  相似文献   
118.
Ohne Zusammenfassung Wolfgang Gaschütz zum 60. GeburtstagHerrn K.-J. Thürlings sei gedankt für hilfreiche Diskussionen.  相似文献   
119.
120.
In nature, thiolate-based systems are the primary targets of divalent mercury (HgII) toxicity. The formation of Hg(Cys)x cores in catalytic and structural protein centers mediates mercury's toxic effects and ultimately leads to cellular damage. Multiple studies have revealed distinct HgII-thiolate coordination preferences, among which linear HgII complexes are the most commonly observed in solution at physiological pH. Trigonal or tetrahedral geometries are formed at basic pH or in tight intraprotein Cys-rich metal sites. So far, no interprotein tetrahedral HgII complex formed at neutral pH has been reported. Rad50 protein is a part of the multiprotein MRN complex, a major player in DNA damage-repair processes. Its central region consists of a conserved CXXC motif that enables dimerization of two Rad50 molecules by coordinating ZnII. Dimerized motifs form a unique interprotein zinc hook domain (Hk) that is critical for the biological activity of the MRN. Using a series of length-differentiated peptide models of the Pyrococcus furiosus zinc hook domain, we investigated its interaction with HgII. Using UV-Vis, CD, PAC, and 199Hg NMR spectroscopies as well as anisotropy decay, we discovered that all Rad50 fragments preferentially form homodimeric Hg(Hk)2 species with a distorted tetrahedral HgS4 coordination environment at physiological pH; this is the first example of an interprotein mercury site displaying tetrahedral geometry in solution. At higher HgII content, monomeric HgHk complexes with linear geometry are formed. The Hg(Cys)4 core of Rad50 is extremely stable and does not compete with cyanides, NAC, or DTT. Applying ITC, we found that the stability constant of the Rad50 Hg(Hk)2 complex is approximately three orders of magnitude higher than those of the strongest HgII complexes known to date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号