首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81464篇
  免费   394篇
  国内免费   452篇
化学   26231篇
晶体学   844篇
力学   6879篇
综合类   6篇
数学   32599篇
物理学   15751篇
  2023年   64篇
  2022年   108篇
  2021年   138篇
  2020年   174篇
  2019年   137篇
  2018年   10513篇
  2017年   10310篇
  2016年   6183篇
  2015年   960篇
  2014年   434篇
  2013年   599篇
  2012年   4001篇
  2011年   10726篇
  2010年   5781篇
  2009年   6181篇
  2008年   6785篇
  2007年   8919篇
  2006年   385篇
  2005年   1472篇
  2004年   1653篇
  2003年   2086篇
  2002年   1111篇
  2001年   311篇
  2000年   326篇
  1999年   197篇
  1998年   230篇
  1997年   177篇
  1996年   214篇
  1995年   137篇
  1994年   92篇
  1993年   108篇
  1992年   62篇
  1991年   73篇
  1990年   54篇
  1989年   66篇
  1988年   66篇
  1987年   69篇
  1986年   68篇
  1985年   58篇
  1984年   54篇
  1983年   52篇
  1982年   53篇
  1981年   47篇
  1980年   49篇
  1979年   49篇
  1914年   45篇
  1913年   40篇
  1912年   40篇
  1909年   41篇
  1908年   40篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The separation of a mixture of 22 bactericides has been achieved by gas chromatography on columns with silicone rubber W-982 as stationary phase with temperatures between 100° and 300°C. The unchanged compounds as well as their silylation products have been used. The latter are more conveniently used especially for the quantitative determination. To be able to calculate the retention indices after Kovats gas chromatography has been performed isothermally at 180°C for the more volatile compounds and at 250°C for all other bactericides.The retention indices obtained under these conditions are tabulated together with the limits of detection.  相似文献   
992.
993.
    
Supramolecular polymers that can heal themselves automatically usually exhibit weakness in mechanical toughness and stretchability. Here we exploit a toughening strategy for a dynamic dry supramolecular network by introducing ionic cluster-enhanced iron-carboxylate complexes. The resulting dry supramolecular network simultaneous exhibits tough mechanical strength, high stretchability, self-healing ability, and processability at room temperature. The excellent performance of these distinct supramolecular polymers is attributed to the hierarchical existence of four types of dynamic combinations in the high-density dry network, including dynamic covalent disulfide bonds, noncovalent H-bonds, iron-carboxylate complexes and ionic clustering interactions. The extremely facile preparation method of this self-healing polymer offers prospects for high-performance low-cost material among others for coatings and wearable devices.  相似文献   
994.
The X-ray absorption fine structure (XAFS) technology has exhibited a very unique application in the study of sorption mechanism, chemical species and microstructures of radionuclides at the natural solid-water interfaces. In this review, the interaction mechanism of radionuclides with clay minerals and nanomaterials under different environmental conditions are summarized from the XAFS spectroscopy analysis. The coordination number and the bond distances of radionuclides, the oxidation-reduction reactions, the influence of humic substances and microorganisms on the species and structures of radionuclides at molecule level are reviewed and compared. This review is helpful to understand the interactions of radionuclides with oxides, natural clay minerals and nanomaterials, which is also crucial to evaluate the physicochemical behaviors of radionuclides in the natural environment.  相似文献   
995.
Metalloproteins have inspired chemists for many years to synthesize artificial catalysts that mimic native enzymes.As a complementary approach to studying native enzymes or making synthetic models,biosynthetic approach using small and stable proteins to model native enzymes has offered advantages of incorporating non-covalent secondary sphere interactions under physiological conditions.However,most biosynthetic models are restricted to natural amino acids.To overcome this limitation,incorporating unnatural amino acids into the biosynthetic models has shown promises.In this review,we summarize first synthetic,semisynthetic and biological methods of incorporates unnatural amino acids(UAAs)into proteins,followed by progress made in incorporating UAAs into both native metalloproteins and their biosynthetic models to fine-tune functional properties beyond native enzymes or their variants containing natural amino acids,such as reduction potentials of azurin,O_2 reduction rates and percentages of product formation of HCO models in Mb,the rate of radical transport in ribonucleotide reductase(RNR)and the proton and electron transfer pathways in photosystemⅡ(PSⅡ).We also discuss how this endeavour has allowed systematic investigations of precise roles of conserved residues in metalloproteins,such as Metl21 in azurin,Tyr244 that is cross-linked to one of the three His ligands to CuB in HCO,Tyr122,356,730 and 731 in RNR and TyrZ in PSⅡ.These examples have demonstrated that incorporating UAAs has provided a new dimension in our efforts to mimic native enzymes and in providing deeper insights into structural features responsible high enzymatic activity and reaction mechanisms,making it possible to design highly efficient artificial catalysts with similar or even higher activity than native enzymes.  相似文献   
996.
Solid phase peptide synthesis (SPPS) based on Fmoc chemistry has become a commonly used technique in peptide chemistry, as it can be easily conducted using automated machine, and not requiring highly toxic HF in comparison to Boc-SPPS. With the fast development in the emerging field of protein chemical synthesis, many efforts have been endeavored aiming to find more efficient methods for preparing peptide fragments required in ligation reactions. This review briefly summarizes recent advances in the engineering and modification of Fmoc-SPPS-derived peptides, which can be used as the N-terminal fragments in a native chemical ligation (NCL) or NCL-type ligation reactions.  相似文献   
997.
Light-emitting electrochemical cells(LECs) are organic photonic devices based on a mixed electronic and ionic conductor.The active layer of a polymer-based LEC consists of a luminescent polymer,an ion-solvating/transport polymer,and a compatible salt.The LEC p-n or p-i-n junction is ultimately responsible for the LEC performance.The LEC junction,however,is still poorly understood due to the difficulties of characterizing a dynamic-junction LEC.In this paper,we present an experimental and modeling study of the LEC junction using scanning optical imaging techniques.Planar LECs with an interelectrode spacing of 560μm have been fabricated,activated,frozen and scanned using a focused laser beam.The optical-beam-induced-current(OBIC)and photoluminescence(PL) data have been recorded as a function of beam location.The OBIC profile has been simulated in COMSOL that allowed for the determination of the doping concentration and the depletion width of the LEC junction.  相似文献   
998.
Compact molecular packing with short π-π stacking and large π-overlap in organic semiconductors is desirable for efficient charge transport and high carrier mobility.Thus charge transport anisotropy along different directions is commonly observed in organic semiconductors.Interestingly,in this article,we found that comparable charge transport property were achieved based on the single crystals of a bis-fused tetrathiafulvalene derivative(EM-TTP) compound along two interaction directions,that is,the multiple strong S…S intermolecular interactions and the π-π stacking direction,with the measured electrical conductivity and hole mobility of 0.4 S cm~(-1),0.94 cm~2 V~(-1) s~(-1) and 0.2 S cm~(-1),0.65 cm2 V~(-1) s~(-1),respectively.This finding provides us a new molecular design concept for developing novel organic semiconductors with isotropic charge transport property through the synergistic effect of multiple intermolecular interactions(such as S…S interactions) and π-π stacking.  相似文献   
999.
Organic field-effect transistors (OFETs) are recently considered to be attractive candidate for bioelectronic applications owing to their prominent biocompatibility, intrinsical flexibility, and potentially low cost associated with their solution processibility. Over the last few years, bioelectronic-application-motivated OFETs have attracted increasing attention towards next generation of biosensors, healthcare elements and artificial neural interfaces. This mini review highlights the basic principles and recent progress in OFET based bioelectronics devices. The key strategies and the forecast perspectives of this research field are also briefly summarized.  相似文献   
1000.
The medium band gap donor-acceptor(D-A) copolymer J61 based on bi(alkylthio-thienyl)benzodithiophene as donor unit and fluorobenzotriazole as acceptor unit and thiophene as π-bridge has demonstrated excellent photovoltaic performance as donor material in nonfullerene polymer solar cells(PSCs) with narrow bandgap n-type organic semiconductor ITIC as acceptor.For studying the effect of π-bridges on the photovoltaic performance of the D-A copolymers,here we synthesized a new D-A copolymer J61-F based on the same donor and acceptor units as J61 but with furan π-bridges instead of thiophene.J61-F possesses a deeper the highest occupied molecular orbital(HOMO) level at-5.45 eV in comparison with that(-5.32 eV) of J61.The non-fullerene PSCs based on J61-F:ITIC exhibited a maximum power conversion efficiency(PCE) of 8.24%with a higher open-circuit voltage(V_(oc)) of 0.95 V,which is benefitted from the lower-lying HOMO energy level of J61-F donor material.The results indicate that main chain engineering by changing π-bridges is another effective way to tune the electronic energy levels of the conjugated D-A copolymers for the application as donor materials in non-fullerene PSCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号