首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1459篇
  免费   75篇
  国内免费   6篇
化学   1139篇
晶体学   2篇
力学   20篇
数学   190篇
物理学   189篇
  2023年   8篇
  2022年   15篇
  2021年   24篇
  2020年   33篇
  2019年   46篇
  2018年   21篇
  2017年   20篇
  2016年   35篇
  2015年   49篇
  2014年   61篇
  2013年   78篇
  2012年   141篇
  2011年   168篇
  2010年   66篇
  2009年   39篇
  2008年   111篇
  2007年   104篇
  2006年   106篇
  2005年   93篇
  2004年   64篇
  2003年   61篇
  2002年   34篇
  2001年   13篇
  2000年   10篇
  1999年   9篇
  1998年   10篇
  1997年   15篇
  1996年   5篇
  1995年   3篇
  1994年   8篇
  1993年   3篇
  1990年   3篇
  1989年   6篇
  1988年   4篇
  1986年   2篇
  1985年   4篇
  1984年   2篇
  1983年   5篇
  1982年   2篇
  1981年   6篇
  1980年   2篇
  1979年   3篇
  1978年   6篇
  1977年   5篇
  1976年   2篇
  1975年   3篇
  1974年   7篇
  1973年   8篇
  1972年   4篇
  1968年   3篇
排序方式: 共有1540条查询结果,搜索用时 12 毫秒
41.
The reaction of Ru2(S2C3H6)(CO)6 (1) with 2 equiv of Et4NCN yielded (Et4N)2[Ru2(S2C3H6)(CN)2(CO)4], (Et4N)2[3], which was shown crystallographically to consist of a face-sharing bioctahedron with the cyanide ligands in the axial positions, trans to the Ru-Ru bond. Competition experiments showed that 1 underwent cyanation >100x more rapidly than the analogous Fe2(S2C3H6)(CO)6. Furthermore, Ru2(S2C3H6)(CO)6 underwent dicyanation faster than [Ru2(S2C3H6)(CN)(CO)5]-, implicating a highly electrophilic intermediate [Ru2(S2C3H6)(mu-CO)(CN)(CO)5]-. Ru2(S2C3H6)(CO)6 (1) is noticeably more basic than the diiron compound, as demonstrated by the generation of [Ru2(S2C3H6)(mu-H)(CO)6]+, [1H]+. In contrast to 1, the complex [1H]+ is unstable in MeCN solution and converts to [Ru2(S2C3H6)(mu-H)(CO)5(MeCN)]+. (Et4N)2[3] was shown to protonate with HOAc (pKa = 22.3, MeCN) and, slowly, with MeOH and H2O. Dicyanide [3]2- is stable toward excess acid, unlike the diiron complex; it slowly forms the coordination polymer [Ru2(S2C3H6)(mu-H)(CN)(CNH)(CO)4]n, which can be deprotonated with Et3N to regenerate [H3]-. Electrochemical experiments demonstrate that [3H]- catalyzes proton reduction at -1.8 V vs Ag/AgCl. In contrast to [3]2-, the CO ligands in [3H]- undergo displacement. For example, PMe3 and [3H]- react to produce [Ru2(S2C3H6)(mu-H)(CN)2(CO)3(PMe3)]-. Oxidation of (Et4N)2[3] with 1 equiv of Cp2Fe+ gave a mixture of [Ru2(S2C3H6)(mu-CO)(CN)3(CO)3]- and [Ru2(S2C3H6)(CN)(CO)5]-, via a proposed [Ru2]2(mu-CN) intermediate. Overall, the ruthenium analogues of the diiron dithiolates exhibit reactivity highly reminiscent of the diiron species, but the products are more robust and the catalytic properties appear to be less promising.  相似文献   
42.
13C chemical shift tensor data from 2D FIREMAT spectra are reported for 4,7-di-t-butylacenaphthene and 4,7-di-t-butylacenaphthylene. In addition, calculations of the chemical shielding tensors were completed at the B3LYP/6-311G** level of theory. While the experimental tensor data on 4,7-di-t-butylacenaphthylene are in agreement with theory and with previous data on polycyclic aromatic hydrocarbons, the experimental and theoretical data on 4,7-di-t-butylacenaphthene lack agreement. Instead, larger than usual differences are observed between the experimental chemical shift components and the chemical shielding tensor components calculated on a single molecule of 4,7-di-t-butylacenaphthene, with a root mean square (rms) error of +/-7.0 ppm. The greatest deviation is concentrated in the component perpendicular to the aromatic plane, with the largest value being a 23 ppm difference between experiment and theory for the 13CH2 carbon delta11 component. These differences are attributed to an intermolecular chemical shift that arises from the graphitelike, stacked arrangement of molecules found in the crystal structure of 4,7-di-t-butylacenaphthene. This conclusion is supported by a calculation on a trimer of molecules, which improves the agreement between experiment and theory for this component by 14 ppm and reduces the overall rms error between experiment and theory to 4.0 ppm. This intermolecular effect may be modeled with the use of nuclei independent chemical shieldings (NICS) calculations and is also observed in the isotropic 1H chemical shift of the CH2 protons as a 4.2 ppm difference between the solution value and the solid-state chemical shift measured via a 13C-1H heteronuclear correlation experiment.  相似文献   
43.
The recently synthesized 3-tert-butyl-5-methyl-1,2,4-triazole reacted with KBH4 to give the new potassium tris(3-tert-butyl-5-methyl-1,2,4-triazolyl)borate K(Ttz(tBu,Me)) ligand. Ttz(tBu,Me) formed a four-coordinate (Ttz(tBu,Me))CoCl complex and five-coordinate (Ttz(tBu,Me))CoNO3 and (Ttz(tBu,Me))ZnOAc complexes. When these complexes were compared to their Tp(tBu,Me) analogues, it was found that Ttz(tBu,Me) resulted in negligible steric differences. K(Ttz(tBu,Me)) is more water-soluble than K(Tp(tBu,Me)), so bulky tris(triazolyl)borate ligands should lead to functional models for enzyme active sites in an aqueous environment and the creation of water-soluble analogues of Tp catalysts.  相似文献   
44.
Electronic structure calculations at the CASSCF and UB3LYP levels of theory with the aug-cc-pVDZ basis set were used to characterize structures, vibrational frequencies, and energies for stationary points on the ground state triplet and singlet O(2)+C(2)H(4) potential energy surfaces (PESs). Spin-orbit couplings between the PESs were calculated using state averaged CASSCF wave functions. More accurate energies were obtained for the CASSCF structures with the MRMP2/aug-cc-pVDZ method. An important and necessary aspect of the calculations was the need to use different CASSCF active spaces for the different reaction paths on the investigated PESs. The CASSCF calculations focused on O(2)+C(2)H(4) addition to form the C(2)H(4)O(2) biradical on the triplet and singlet surfaces, and isomerization reaction paths ensuing from this biradical. The triplet and singlet C(2)H(4)O(2) biradicals are very similar in structure, primarily differing in their C-C-O-O dihedral angles. The MRMP2 values for the O(2)+C(2)H(4)→C(2)H(4)O(2) barrier to form the biradical are 33.8 and 6.1 kcal/mol, respectively, for the triplet and singlet surfaces. On the singlet surface, C(2)H(4)O(2) isomerizes to dioxetane and ethane-peroxide with MRMP2 barriers of 7.8 and 21.3 kcal/mol. A more exhaustive search of reaction paths was made for the singlet surface using the UB3LYP/aug-cc-pVDZ theory. The triplet and singlet surfaces cross between the structures for the O(2)+C(2)H(4) addition transition states and the biradical intermediates. Trapping in the triplet biradical intermediate, following (3)O(2)+C(2)H(4) addition, is expected to enhance triplet→singlet intersystem crossing.  相似文献   
45.
Electrochemical polarisation experiments have shown that anodic dissolution processes on Al–40% Zn alloys are significantly enhanced in chloride compared to sulfate-based electrolytes. The aluminium content of the alloys allowed passive behaviour to be observed in sulfate electrolyte even in the presence of zinc-rich precipitates on the surface. Electrolyte pH affected cathodic processes, which was attributed to the rate of proton reduction and the passivity of the surface. Monitoring the OCP of the alloy band during polarisation of neighbouring zinc electrodes in band microelectrode (BME) arrays showed that generation of alkaline pH at the zinc electrodes affected the OCP of the alloy when the inter-electrode spacing was 10, 50, and 200 μm. Where elements of a BME array were close enough to interact via mass transport, the overall galvanic behaviour of the cell was found to be anodic or cathodic, whereas the alloy was consistently cathodic with respect to zinc in galvanic cells at larger separations. Dedicated to the 80th birthday of Keith B. Oldham.  相似文献   
46.
47.
Side‐effects from allograft, limited bone stock, and site morbidity from autograft are the major challenges to traditional bone defect treatments. With the advance of tissue engineering, hydrogel injection therapy is introduced as an alternative treatment. Therapeutic drugs and growth factors can be carried by hydrogels and delivered to patients. Abaloparatide, as an analog of human recombinant parathyroid hormone protein (PTHrp) and an alternative to teriparatide, has been considered as a drug for treating postmenopausal osteoporosis since 2017. Since only limited cases of receiving abaloparatide with polymeric scaffolds have been reported, the effects of abaloparatide on pre‐osteoblast MC3T3‐E1 are investigated in this study. It is found that in vitro abaloparatide treatment can promote pre‐osteoblast MC3T3‐E1 cells’ viability, differentiation, and mineralization significantly. For the drug delivery system, 3D porous structure of the methacrylated gelatin (GelMA) hydrogel is found effective for prolonging the release of abaloparatide (more than 10 days). Therefore, injectable photo‐crosslinked GelMA hydrogel is used in this study to prolong the release of abaloparatide and to promote healing of defected bones in rats. Overall, data collected in this study show no contradiction and imply that Abaloparatide‐loaded GelMA hydrogel is effective in stimulating bone regeneration.  相似文献   
48.
The thermal rearrangement of several N-nitrosoamides was studied by 1H NMR in the context of reversible encapsulation. The N-nitrosoamide guests were isolated from the bulk solvent in a hydrogen-bonded dimeric host capsule which prevented their rearrangement. The guests appear to be preserved in their ground state conformations by the pressure exerted by the host. The conformations of the free and bound N-nitrosoamides are of comparable relative energies as determined by DFT calculations.  相似文献   
49.
Here we report a cavitand with a photochemical switch as one of the container walls. The azo-arene switch undergoes photoisomerization when subjected to UV light producing a self-fulfilled cavitand. This process is thermally and photochemically reversible. The reported cavitand binds small molecules and these guests can be ejected from the cavitand through this photochemical process.  相似文献   
50.
The high‐resolution analysis of genetic variation has major implications for the identification of parasites and micro‐organisms to species and subspecies as well as for population genetic and epidemiological studies. In this study, we critically assessed the effectiveness of a PCR‐based restriction endonuclease fingerprinting (REF) method for the detection of mutations in the 60 kDa glycoprotein gene (gp60) of Cryptosporidium, a genus of parasitic protists of major human and animal health importance globally. This gene displays substantial intraspecific variability in sequence, particularly in a TCA (perfect and imperfect) microsatellite region, is present as a single copy in the nuclear genome and is used widely as a marker in molecular epidemiological studies of Cryptosporidium hominis and C. parvum, the two predominant species that infect humans. The results of this study demonstrated an exquisite capacity of REF to detect nucleotide variability in the gp60 gene within each of the two species. The differentiation of genotypes/subgenotypes based on REF analysis was supported by targeted sequencing, allowing the detection of levels of variation as low as a single‐nucleotide transversion for amplicons of ∼1 kb in size. The high‐throughput potential and relatively low‐cost of REF make it a particularly useful tool for large‐scale genetic analyses of C. hominis and C. parvum. REF could also be utilized for comparative surveys of genetic variability across large nuclear genomic regions. Such analyses of Cryptosporidium in clinical and environmental samples by REF have important implications for identifying sources of infection, modes of transmission and/or possible infectivity to humans, thus assisting in the surveillance and control of cryptosporidiosis. Given its excellent mutation detection capacity, REF should find broad applicability to various single‐copy genes as well as a wide range of other protozoan and metazoan parasites. (The nucleotide sequences reported in this article are available in the GenBank database under accession numbers GU214343–GU214371).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号