首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1463篇
  免费   81篇
  国内免费   6篇
化学   1143篇
晶体学   2篇
力学   20篇
数学   192篇
物理学   193篇
  2023年   8篇
  2022年   11篇
  2021年   25篇
  2020年   33篇
  2019年   46篇
  2018年   21篇
  2017年   20篇
  2016年   35篇
  2015年   49篇
  2014年   61篇
  2013年   79篇
  2012年   141篇
  2011年   171篇
  2010年   67篇
  2009年   39篇
  2008年   112篇
  2007年   104篇
  2006年   106篇
  2005年   93篇
  2004年   64篇
  2003年   61篇
  2002年   34篇
  2001年   13篇
  2000年   10篇
  1999年   9篇
  1998年   10篇
  1997年   15篇
  1996年   5篇
  1995年   3篇
  1994年   8篇
  1993年   4篇
  1990年   3篇
  1989年   6篇
  1988年   4篇
  1986年   2篇
  1985年   5篇
  1984年   2篇
  1983年   4篇
  1982年   2篇
  1981年   8篇
  1980年   3篇
  1979年   3篇
  1978年   6篇
  1977年   6篇
  1976年   2篇
  1975年   3篇
  1974年   8篇
  1973年   8篇
  1972年   4篇
  1968年   3篇
排序方式: 共有1550条查询结果,搜索用时 15 毫秒
991.
New chiral 1,3-bis(4R-phenyl-2-oxazolinyl)propane (ProboxPh) and achiral 1,3-bis(4,4-dimethyl-2-oxazolinyl)propane (ProboxMe2) ligands have been prepared by Cd(OAc)2-catalyzed condensation reactions. These ligands, and the known isopropyl derivative ProboxiPr, react with [PdCl2(NCPh)2] and [RhCl(η2-C8H14)2]2 to form 16-membered bimetallic macrocycles. Additionally, ProboxMe2 and RhCl3 react to form a new monoanionic NCN-type pincer complex (κ3-N,C,N-ProboxMe2)RhCl2. The structures of new palladium and rhodium macrocycles with the Probox ligands are confirmed by X-ray crystallography, and natural abundance 15N 2D NMR experiments prove oxazoline coordination to the metal centers in solution. Addition of a weakly donating water ligand to (κ3-N,C,N-ProboxMe2)RhCl2 gives a six-coordinate compound with a mer-Probox configuration, whereas PMe3 coordination provides a single fac coordinated Probox isomer.  相似文献   
992.
Catalytic dehydrocoupling of phosphines was investigated using the anionic zirconocene trihydride salts [Cp*2Zr(mu-H)3Li]3 (1 a) or [Cp*2Zr(mu-H)3K(thf)4] (1 b), and the metallocycles [CpTi(NPtBu3)(CH2)4] (6) and [Cp*M(NPtBu3)(CH2)4] (M=Ti 20, Zr 21) as catalyst precursors. Dehydrocoupling of primary phosphines RPH2 (R=Ph, C6H2Me3, Cy, C10H7) gave both dehydrocoupled dimers RP(H)P(H)R or cyclic oligophosphines (RP)n (n=4, 5) while reaction of tBu3C6H2PH2 gave the phosphaindoline tBu2(Me2CCH2)C6H2PH 9. Stoichiometric reactions of these catalyst precursors with primary phosphines afforded [Cp*2Zr((PR)2)H][K(thf)4] (R=Ph 2, Cy 3, C6H2Me3 4), [Cp*2Zr((PPh)3)H][K(thf)4] (5), [CpTi(NPtBu3)(PPh)3] (7) and [CpTi(NPtBu3)(mu-PHPh)]2 (8), while reaction of 6 with (C6H2tBu3)PH2 in the presence of PMe3 afforded [CpTi(NPtBu3)(PMe3)(P(C6H2tBu3)] (10). The secondary phosphines Ph2PH and (PhHPCH2)2CH2 also undergo dehydrocoupling affording (Ph2P)2 and (PhPCH2)2CH2. The bisphosphines (CH2PH2)2 and C6H4(PH2)2 are dehydrocoupled to give (PCH2CH2PH)2)(12) and (C6H4P(PH))2 (13) while prolonged reaction of 13 gave (C6H4P2)(8) (14). The analogous bisphosphine Me2C6H4(PH)2 (17) was prepared and dehydrocoupling catalysis afforded (Me2C6H2P(PH))2 (18) and subsequently [(Me2C6H2P2)2(mu-Me2C6H2P2)]2 (19). Stoichiometric reactions with these bisphosphines gave [Cp*2Zr(H)(PH)2C6-H4][Li(thf)4] (22), [CpTi(NPtBu3)(PH)2C6H4]2 (23) and [Cp*Ti(NPtBu3)(PH)2C6H4] (24). Mechanistic implications are discussed.  相似文献   
993.
The reaction of a heteroligated Rh(I) bimetallic macrocycle with rigid ditopic ligands (1,4-dicyanobenzene, 4-4'-dicyanobiphenyl, or dipyridyl terminated salen ligand 5) results in the formation of tetrametallic rectangular box complexes.  相似文献   
994.
Spectrally resolved infrared stimulated vibrational echo experiments are used to measure the vibrational dephasing of a CO ligand bound to the heme cofactor in two mutated forms of the cytochrome c552 from Hydrogenobacter thermophilus. The first mutant (Ht-M61A) is characterized by a single mutation of Met61 to an Ala (Ht-M61A), while the second variant is doubly modified to have Gln64 replaced by an Asn in addition to the M61A mutation (Ht-M61A/Q64N). Multidimensional NMR experiments determined that the geometry of residue 64 in the two mutants is consistent with a non-hydrogen-bonding and hydrogen-bonding interaction with the CO ligand for Ht-M61A and Ht-M61A/Q64N, respectively. The vibrational echo experiments reveal that the shortest time scale vibrational dephasing of the CO is faster in the Ht-M61A/Q64N mutant than that in Ht-M61A. Longer time scale dynamics, measured as spectral diffusion, are unchanged by the Q64N modification. Frequency-frequency correlation functions (FFCFs) of the CO are extracted from the vibrational echo data to confirm that the dynamical difference induced by the Q64N mutation is primarily an increase in the fast (hundreds of femtoseconds) frequency fluctuations, while the slower (tens of picoseconds) dynamics are nearly unaffected. We conclude that the faster dynamics in Ht-M61A/Q64N are due to the location of Asn64, which is a hydrogen bond donor, above the heme-bound CO. A similar difference in CO ligand dynamics has been observed in the comparison of the CO derivative of myoglobin (MbCO) and its H64V variant, which is caused by the difference in axial residue interactions with the CO ligand. The results suggest a general trend for rapid ligand vibrational dynamics in the presence of a hydrogen bond donor.  相似文献   
995.
996.
997.
998.
The interaction energy and minimum energy structure for different geometries of the benzene dimer have been calculated using the recently developed nonlocal correlation energy functional for calculating dispersion interactions. The comparison of this straightforward and relatively quick density functional based method with recent calculations provides a promising first step to elucidate how the former, quicker method might be exploited in larger more complicated biological, organic, aromatic, and even infinite systems such as molecules physisorbed on surfaces and van der Waals crystals.  相似文献   
999.
Poly(methyl methacrylate) (PMMA)/carbon black (CB) composites were fabricated using two different mixing methods: (1) mechanical mixing and (2) solution mixing of the precursors, followed by compression molding. The microstructures obtained were examined by optical and scanning electron microscopy. Electrical properties were measured using impedance spectroscopy over a wide frequency range (10(-3) to +10(9) Hz). With the mechanical mixing method, a segregated structure is produced with PMMA particles forming faceted grains with carbon black particles aligning to form a network of 3D-interconnected nanowires. This microstructure allows percolation to occur at a low volume fraction of 0.26 vol % CB. In contrast, specimens made by the solution method have a microstructure where carbon black is distributed more randomly throughout the bulk, and thus, the percolation threshold is higher (2.7 vol % CB). The electrical properties of the PMMA/CB composites fabricated by the mechanical mixing method are comparable to those obtained with single-wall nanotubes as fillers.  相似文献   
1000.
Synthesis of hybrid CdS-Au colloidal nanostructures   总被引:1,自引:0,他引:1  
We explore the growth mechanism of gold nanocrystals onto preformed cadmium sulfide nanorods to form hybrid metal nanocrystal/semiconductor nanorod colloids. By manipulating the growth conditions, it is possible to obtain nanostructures exhibiting Au nanocrystal growth at only one nanorod tip, at both tips, or at multiple locations along the nanorod surface. Under anaerobic conditions, Au growth occurs only at one tip of the nanorods, producing asymmetric structures. In contrast, the presence of oxygen and trace amounts of water during the reaction promotes etching of the nanorod surface, providing additional sites for metal deposition. Three growth stages are observed when Au growth is performed under air: (1) Au nanocrystal formation at both nanorod tips, (2) growth onto defect sites on the nanorod surface, and finally (3) a ripening process in which one nanocrystal tip grows at the expense of the other particles present on the nanorod. Analysis of the hybrid nanostructures by high-resolution TEM shows that there is no preferred orientation between the Au nanocrystal and the CdS nanorod, indicating that growth is nonepitaxial. The optical signatures of the nanocrystals and the nanorods (i.e., the surface plasmon and first exciton transition peaks, respectively) are spectrally distinct, allowing the different stages of the growth process to be easily monitored. The initial CdS nanorods exhibit band gap and trap state emission, both of which are quenched during Au growth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号