排序方式: 共有56条查询结果,搜索用时 0 毫秒
11.
针对多属性决策中指标的信息重复和不确定性问题,提出了一种基于改进的k-means聚类与粗糙集算法相结合的指标筛选方法。首先,定义样本的空间分布密度,实现初始聚类中心优化的k-means算法,对连续型指标进行离散化处理;然后利用粗糙集的相对约简原理进行指标约简,删除存在信息重复的冗余指标,并结合绿色经济指标体系构建的案例验证了该方法的合理性和有效性。 相似文献
12.
金刚石对顶砧是应用最多的高压装置,能够产生超过400 GPa的超高压力,借助激光加温,还可以加载6 000 K的高温。近20年来,基于金刚石对顶砧的微小测量电路集成技术的突破,带动了高压原位电学量测量技术的发展,使常压下能够测量的电学量大部分都能在金刚石对顶砧中的高压环境下实现。全面回顾了基于集成技术的金刚石对顶砧高压原位电学量测量技术的发展历程,介绍了最新的技术进展。 相似文献
13.
The structural transition of bulk and uano-size Gd2O3:Eu are studied by high pressure energy disperse x-ray diffraction (XRD) and high pressure photoluminescence. Our results show that in spite of different size of Gd2O3 particles, the cubic structure turns into a possible hexagonal one above 13.4 GPa. When the pressure is released, the sample reverses to the monoclinic structure. No cubic structure presents in the released samples. That is to say, the compression and relaxation of the sample leads to the cubic Gd2O3:Eu then turns into the monoclinic one. 相似文献
14.
15.
We report on the intriguing electrical transport properties of compressed CaF_2 nanocrystals. The diffusion coefficient,grain and grain boundary resistances vary abnormally at about 14.37 GPa and 20.91 GPa, corresponding to the beginning and completion of the Fm3m-Pnma structural transition. Electron conduction and ion conduction coexist in the transport process and the electron conduction is dominant. The electron transference number of the Fm3m and Pnma phases increases with pressure increasing. As the pressure rises, the F~- ion diffusion and electronic transport processes in the Fm3m and Pnma phases become more difficult. Defects at grains play a dominant role in the electronic transport process. 相似文献
16.
The in situ electrical resistance and transport activation energies of solid C60 fullerene have been measured under high pressure up to 25 GPa in the temperature range of 300-423 K by using a designed diamond anvil cell. In the experiment, four parts of boron-doped diamond films fabricated on one anvil were used as electrical measurement probes and a W-Ta thin film thermocouple which was integrated on the other diamond anvil was used to measure the temperature. The current results indicate that the measured high-pressure resistances are bigger than those reported before at the same pressure and there is no pressure-independent resistance increase before 8 GPa. From the temperature dependence of the resistivity, the C60 behaviors as a semiconductor and the activation energies of the cubic C60 fullerene are 0,49, 0.43, and 0.36 eV at 13, 15, and 19 GPa, respectively. 相似文献
17.
18.
19.
Electrical transport properties of bismuth vanadate(BiVO4) are studied under high pressures with electrochemical impedance spectroscopy. A pressure-induced ionic-electronic transition is found in BiVO4. Below 3.0 GPa, BiVO4 has ionic conduction behavior. The ionic resistance decreases under high pressures due to the increasing migration rate of O2-ions. Above 3.0 GPa the channels for ion migration are closed. Transport mechanism changes from the ionic to the electronic behavior. First-principles calculations show that bandgap width narrows under high pressures, causing the continuous decrease of electrical resistance of BiVO4. 相似文献
20.
Structural stability and electrical properties of AIB2-type MnB2 under high pressureStructural stability and electrical properties of AIB2-type MnB2 under high pressureStructural stability and electrical properties of AIB2-type MnB2 under high pressureStructural stability and electrical properties of AIB2-type MnB2 under high pressure
下载免费PDF全文

The structural stability and electrical properties of A1B2-type MnB2 were studied based on high pressure angle- dispersive x-ray diffraction, in situ electrical resistivity measured in a diamond anvil cell (DAC) and first-principles calcu- lations under high pressure. The x-ray diffraction results show that the structure of A1B2-type MnB2 remains stable up to 42.6 GPa. From the equation of state of MnB2, we obtained a bulk modulus value of 169.9~3.7 GPa with a fixed pressure derivative of 4, which indicates that A1B2-type MnB2 is a hard and incompressible material. The electrical resistance un- dergoes a transition at about 19.3 GPa, which can be explained by a transition of manganese 3d electrons from localization to delocalization under high pressure. 相似文献