首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   684篇
  免费   155篇
  国内免费   346篇
化学   599篇
晶体学   22篇
力学   34篇
综合类   29篇
数学   186篇
物理学   315篇
  2024年   5篇
  2023年   13篇
  2022年   20篇
  2021年   31篇
  2020年   23篇
  2019年   34篇
  2018年   27篇
  2017年   24篇
  2016年   36篇
  2015年   28篇
  2014年   42篇
  2013年   45篇
  2012年   37篇
  2011年   43篇
  2010年   40篇
  2009年   40篇
  2008年   33篇
  2007年   37篇
  2006年   42篇
  2005年   43篇
  2004年   49篇
  2003年   41篇
  2002年   48篇
  2001年   35篇
  2000年   22篇
  1999年   35篇
  1998年   28篇
  1997年   26篇
  1996年   32篇
  1995年   40篇
  1994年   17篇
  1993年   24篇
  1992年   19篇
  1991年   9篇
  1990年   15篇
  1989年   13篇
  1988年   16篇
  1987年   20篇
  1986年   14篇
  1985年   9篇
  1984年   5篇
  1983年   3篇
  1982年   2篇
  1981年   5篇
  1980年   4篇
  1979年   2篇
  1965年   2篇
  1959年   1篇
  1955年   2篇
  1954年   1篇
排序方式: 共有1185条查询结果,搜索用时 0 毫秒
61.
Mass-selected C60 beam produced by laser ablation was accelerated and bombarded the (0001) surface of highly oriented pyrolitic graphite and (111) surface of gold single crystal. The samples were characterized by STM. The STM images showed that, the deposited species collapsed and formed planar structure on the solid surface, but the collapsed species were not dissociated and well oriented on the surface. Both positive and negative C60 ions were observed in the desorption mass spectra, confirming that the species collapsed on the solid surface are still the C60 clusters.  相似文献   
62.
硫化物/Ru(Ⅱ)结合物复合敏化TiO_2纳米多孔膜   总被引:1,自引:0,他引:1  
用光电化学方法研究了Cds、Pbs和RuL2(NCS)2(L=2.2′-bipydine-4.4′-dicarboxylicacid)复合敏化TiO2。纳米晶电极的光电化学行为.结果表明,采用复合敏化比用rul(Ⅱ)络合物单独敏化TiO2。纳米晶电极效果好,大大提高了光电转换效率.主要原因是采用复合敏化,可防止TiO2导带上由光注入产生的电子的反向转移,避免了电子的损失.  相似文献   
63.
64.
在平面型钙钛矿太阳能电池中常采用SnO2作为电子传输层材料,相应的SnO2薄膜常采用溶液旋涂法制备。但是由于前驱液中的纳米颗粒可能会发生部分团聚、基底和溶液难以完全避免灰尘等杂质颗粒混入,且最佳的SnO2电子传输层的厚度通常仅有约20 nm,所以这种方法制备的电子传输层难以保证严格致密和无纳米针孔。在本工作中,我们报道了一种电泳沉积制备致密SnO2薄膜的方法,并用其有效地提高了钙钛矿太阳能电池的光电转换效率和工况稳定性。通过电泳法,表面带负电荷的SnO2纳米颗粒在电场的作用下沉积到氧化铟锡(ITO)阳极表面,这种方法得到的薄膜比旋涂法制备的更为致密。将其应用于n-i-p结构的钙钛矿太阳能电池中,能够使得暗电流降低并抑制载流子的非辐射复合,从而提高电池的短路电流和开路电压,进而实现更高的光电转换效率(从18.17%提高到19.52%),且能消除迟滞效应。更重要的是,长期工况稳定性测试表明基于电泳-旋涂法制备的器件在1个太阳的光照下、最大功率点处连续工作960 h后,仍然能够保持71%的初始效率;然而基于旋涂法制备的器件在工作100 h后即降低到初始效率的70%。本工作提供了一种全新的SnO2电子传输层的制备方法,显著地提高了器件性能和工况稳定性,后续有望应用于制备大面积器件和电池模组。  相似文献   
65.
以乙酸铜和乙酸锰为铜锰前驱体,以NH4HCO3为沉淀剂,相应金属硝酸盐为掺杂剂,采用共沉淀法制备了不同过渡金属氧化物掺杂的铜锰氧化物催化剂.采用N2物理吸附、X射线衍射,氢气-程序升温还原和原位红外漫反射光谱等方法对催化剂进行了表征,考察了系列催化剂上CO反应性能.结果表明,掺杂过渡金属氧化物可以调变催化剂对CO的吸附能力,进而影响催化剂性能.  相似文献   
66.
采用共沸精镏辅助的原位法成功合成了高度分散的Pd纳米颗粒负载在ZSM-5中(Pd/ZSM-5-IS)分子筛催化剂。通过XRD、TEM、XPS等手段对Pd/ZSM-5-IS的样品进行了表征,并考察反应压力、反应温度、反应时间对肉桂醛加氢催化性能的影响。结果表明:原位法制备的Pd/ZSM-5-IS催化剂比浸渍法制备的Pd/ZSM-5-IM催化剂具有更高的催化稳定性,其主要归因于Pd纳米颗粒进入ZSM-5的晶内介孔有效防止活性位点的损失和聚集。当反应温度为80℃,反应压力为1 MPa,反应时间为3 h时为最佳反应条件,肉桂醛的转化率为87.23%,苯丙醛的选择性为76.68%。  相似文献   
67.
对三维荧光法测定水中的4-氯苯酚进行了研究,并与传统的比色法进行了比较。4-氯苯酚的三维荧光光谱图中荧光特征峰位于λex/λem=280 nm/310 nm处,在pH 1~8时,荧光较强且稳定。4-氯苯酚质量浓度为0.01~2.0 mg/L时,荧光强度与浓度的线性相关系数R2为0.9997,检出限为0.0096 mg/L。方法可用于自来水及地表水中的4-氯苯酚的测定,回收率在94.3%~106.0%。  相似文献   
68.
用光电化学方法研究棒状和多孔氧化银电极在阳极极化过程中的光响应规律可以得到许多信息。最大光响应出现在电极表面的AgO被充分地还原为Ag_2O以及Ag结晶即将生成瞬间, 多孔电极和实体电极开路光电位ΔV_(ph,oc)之比有助于对多孔电极孔结构的了解, 首次观测到n-p-n光响应波形的转化。  相似文献   
69.
An ion-pair compound,[HL]2[Ni(CN)4]·4H2O 1 has been obtained as an unexpected product when we attempt to prepare a heterometallic cyano-bridged complex by the reaction of GdCl3·nH2O,K2Ni(CN)4 and L (L=4-(2-hydroxyphenyl)-1,5,9-triazacyclododecan-2-one) in aqueous solution,and characterized by single-crystal X-ray diffraction.It crystallizes in monoclinic,space group P21/n with a=12.380(1),b=9.9637(8),c=17.087(1)A,β=105.947(2)°,V=2026.6(3) A3,Rint=0.0509,Z=2,Dc=1.297g/cm3,C34H56O8N10Ni,Mr=791.60,F(000)=844,μ(MoKα)=0.538 mm-1,S=1.030,the final R=0.0644 and wR=0.1299 for 2023 observed reflections with I≥2σ(I).The title compound 1 contains one anion of [Ni(CN)4]2-,two cations of [HL]+and four packing water molecules,which are held together by the N-H…O and O-H…O hydrogen bonds to form a three-dimensional framework.  相似文献   
70.
电化学方法检测DNA碳纳米管修饰电极   总被引:3,自引:0,他引:3  
DNA;碳纳米管;修饰电极;硫堇;电化学指示剂  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号