首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   192篇
  免费   175篇
  国内免费   145篇
化学   167篇
晶体学   3篇
力学   44篇
综合类   2篇
数学   19篇
物理学   277篇
  2024年   3篇
  2023年   7篇
  2022年   11篇
  2021年   9篇
  2020年   10篇
  2019年   5篇
  2018年   13篇
  2017年   5篇
  2016年   18篇
  2015年   13篇
  2014年   27篇
  2013年   34篇
  2012年   23篇
  2011年   22篇
  2010年   28篇
  2009年   45篇
  2008年   25篇
  2007年   35篇
  2006年   28篇
  2005年   26篇
  2004年   26篇
  2003年   9篇
  2002年   5篇
  2001年   17篇
  2000年   10篇
  1999年   7篇
  1998年   7篇
  1997年   5篇
  1996年   10篇
  1995年   4篇
  1994年   8篇
  1993年   1篇
  1992年   3篇
  1991年   5篇
  1990年   1篇
  1988年   1篇
  1986年   2篇
  1985年   3篇
  1984年   1篇
排序方式: 共有512条查询结果,搜索用时 31 毫秒
201.
采用分子动力学方法模拟二氟尼柳插层水滑石(DIF/LDHs)的超分子结构, 研究复合材料主客体间形成的氢键以及水合膨胀特性.结果表明, 当水分子总数与DIF分子总数之比Nw≤3时, 层间距dc保持基本恒定, 约1.80 nm; 当Nw≥4时, 层间距逐渐增大, 且符合dc=1.2611Nw+13.63线性方程. 随着水分子个数增加, 水合能驻UH逐渐增大. 当Nw≤16时, 由于⊿UH<-41.84 kJ·mol-1, LDHs-DIF可以持续吸收水, 从而使材料层间距不断膨胀. 但当Nw≥24时, ⊿UH>-41.84 kJ·mol-1, 此时LDHs-DIF层间不能再进一步水合, 因此LDHs-DIF在水环境中膨胀具有一定的限度. 水滑石层间存在复杂的氢键网络. DIF/LDHs水合过程中, 水分子首先同步与层板和阴离子构成氢键; 当阴离子趋于饱和后, 水分子继续与层板形成氢键, 并逐步发生L-W型氢键取代L-A型氢键, 驱使阴离子向层间中央移动, 与层板发生隔离; 最后水分子在水滑石羟基表面形成有序结构化水层.  相似文献   
202.
采用Dmol3程序中密度泛函理论(DFT)的广义梯度方法GGA/BLYP和DND基组研究了银离子交换的丝光沸石([AgJ-AIMOR)结构及其对NOx分子吸附性能的影响,获得吸附复合物的平衡儿何结构参数、吸附能以及红外振动频率等数据.结果表明,NO,分子与丝光沸石间的主要作用力为NOx分子中的氮(或氧)原子上的孤对电子和Ag+间的静电作用力.吸附能数据表明,NOx分子以η1-N模式吸附在[Agl-AIMOR 分子筛中的结构更稳定;在η1-N 模式中,NOx分子吸附作用强度的次序为 NO>N02>N2O.红外振动频率结果表明,吸附态NOx分子中 N-O 和N-N 键伸缩振动频率的位移趋势与 N-O 和 N-N 键变化规律基本相一致.另外,对 [Ag]-A1MOR分子筛的抗硫、抗水及抗氧化性能也进行了研究和分析.  相似文献   
203.
介孔分子筛COAPSO的合成、表征及其环己烷氧化催化性能   总被引:1,自引:0,他引:1  
采用一步晶化法合成了具有McM-41介孔分子筛结构的CoAPSO分子筛.用X射线粉末衍射(XRD)、元素分析(ICP)、氮气吸附、透射电镜(TEM)、紫外可见漫反射光谱(UV-Vis)和热重分析(TG)等对样品进行了表征.合成的样品热稳定性高,孔径大约在2.5 nm左右.钴原子以四配位形式进入介孔孔壁中;随着钴含量增加,样品的孔径减小,孔壁增厚.在环己烷氧化反应中,所合成的CoAPSO分子筛显示出较高的催化活性和环己酮选择性;当钴含量为0.34%时,单位钴原子上环己烷的转化数达到420.5.  相似文献   
204.
洋茉莉醛中间体3,4-亚甲二氧基苯乙醇酸的合成与表征   总被引:1,自引:0,他引:1  
茉莉醛又称胡椒醛,学名3,4-亚甲二氧基苯甲醛(3,4-methylenedioxy benzaldehyde),广泛应用于合成香料、医药、食品、日化、电镀等领域.目前全球洋茉莉醛生产主要集中在我国、日本、美国和欧盟,总产能约1万吨/年.我国和日本主要采用天然黄樟油路线合成洋茉莉醛.随着全球生产量的不断增大,黄樟油资源面临枯竭,研究和开发以简单化学品为原料的全合成方法成为当务之急[1][2].在酸催化下,以乙醛酸和胡椒环为原料合成3,4-亚甲二氧基苯乙醇酸,再经氧化得到洋茉莉醛的路线,具有工艺设备简单、三废少、收率高、产品纯度高等优点,成为替代黄樟油路线法较为理想的全合成路线[3][4].  相似文献   
205.
采用相似材料模拟实验方法并借助SHPB(split Hopkinson pressure bar)实验系统,探究应变率及节理倾角对节理岩石动态力学性状的影响,包括应力应变曲线特征、破坏模式、能量传递及耗散规律。该实验结果表明:应变率升高,动态弹性模量增大,试件破碎块度变小,完整试件裂纹缺陷沿着平行于压应力方向扩展;节理角度越大,峰值强度越低,但当应变率升高到一定程度,节理角度对岩石破坏形态的影响不再明显;不同试件的入射能、反射能、透射能和耗散能均随应变率升高呈非线性增加,含倾斜角度节理试件的能量耗散率随应变率的变化幅度明显大于完整试件。  相似文献   
206.
以Beta分子筛为催化剂, 系统考察了反应条件和催化剂酸性变化对甲苯和三甲苯烷基转移反应催化性能的影响. 实验结果表明, 反应条件、分子筛晶粒尺寸及其酸性对烷基转移催化活性和稳定性都具有显著影响. 研究发现: 当反应温度为450 ℃、压力为3 MPa以及反应物甲苯和三甲苯物质的量比为1时, 二甲苯收率达到最高; 分子筛催化活性随硅铝比升高而降低; 催化剂晶粒尺寸减小能够显著提高反应稳定性. 同时, 还对甲苯和三甲苯烷基转移反应机理进行了深入研究, 推导出了可能的反应机理路线图.  相似文献   
207.
针对地震作用下高层建筑结构大系统控制问题,引入分散控制的策略,导出重叠分散最优控制(Overlapping Decentralized Optimal Control)算法。该方法将包含原理与线性二次型(Linear Quadratic Regulator)最优控制原理相结合,通过扩展分解控制系统及协调收缩获得重叠分散控制器。对某20层钢结构Benchmark结构模型进行数值计算与分析,结果表明,导出的重叠分散最优控制方法可以有效地抑制结构地震反应,控制效果不仅接近传统的集中控制方法,而且提高了高层结构大系统控制的鲁棒性和可靠性。本文方法可应用于大尺度高层结构振动控制中,实现高层建筑结构地震反应的可靠控制。  相似文献   
208.
微波磁场和斜入射对介质表面次级电子倍增的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
蔡利兵  王建国 《物理学报》2010,59(2):1143-1147
分别研究了微波磁场和斜入射微波电场对介质表面次级电子倍增的影响.利用particle-in-cell/Monte Carlo方法,获得了微波磁场和斜入射微波电场条件下电子数量、介质表面直流场、电子平均能量和介质表面吸收功率的时间变化图像.模拟结果表明,斜入射和微波磁场虽然会显著影响电子的平均能量,但对电子数量和介质表面吸收功率的影响并不大,因此不会对微波介质表面击穿产生太大作用.  相似文献   
209.
使用基于相对论多组态方法的FAC程序,研究了类钠Ni17+(3s)离子通过双激发态Ni16+(3pnl,3dnl)(Δn=0激发)的双电子复合过程,得到了态选择的双电子复合截面和速率系数,并与文献中的实验和理论数据进行了对比.结果发现,计算通过3p3/210l和3p1/211l共振态的双电子复合积分截面在实验误差范围内与实验测量很好地符合,并好于全相对论的多体微扰理论计算结果.结合量子亏损理论,发现包含高里德伯态的共振双激发态的辐射跃迁和自电离速率具有较好的标度关系,利用该关系给出了近激发阈值的所有共振态的双电子复合积分截面和速率系数.比较3pnl和3dnl两个系列,发现在低温(大约小于100eV)等离子体情况下前者速率系数比后者大,更高的温度后者大.  相似文献   
210.
高空核爆炸瞬发辐射电离效应的数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
采用蒙特卡罗方法模拟了高空核爆炸瞬发辐射中子、γ射线、X射线电离大气的过程,给出了几种爆炸场景下瞬发辐射产生的附加电离电子密度空间分布.针对大气密度随高度非均匀连续变化的特性,采用质量距离抽样方法取代常用的步长抽样方法,无需根据大气密度随高度的变化进行分层处理,提高了计算效率.结果表明:对于不同的爆高,瞬发辐射电离分布存在显著的差异;随着爆高的增加,瞬发辐射附加电离区范围增大,但电子密度的峰值减小. 关键词: 高空核爆炸 瞬发辐射 大气电离 蒙特卡罗方法  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号