首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   143篇
  免费   33篇
  国内免费   23篇
化学   62篇
力学   6篇
综合类   4篇
数学   20篇
物理学   107篇
  2023年   4篇
  2022年   6篇
  2021年   8篇
  2020年   7篇
  2019年   17篇
  2018年   13篇
  2017年   11篇
  2016年   13篇
  2015年   9篇
  2014年   7篇
  2013年   9篇
  2012年   13篇
  2011年   5篇
  2010年   5篇
  2009年   3篇
  2008年   13篇
  2007年   6篇
  2006年   7篇
  2005年   6篇
  2004年   5篇
  2003年   2篇
  2002年   4篇
  2001年   2篇
  2000年   8篇
  1999年   4篇
  1998年   2篇
  1996年   2篇
  1995年   2篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
  1984年   1篇
  1982年   1篇
  1956年   1篇
排序方式: 共有199条查询结果,搜索用时 18 毫秒
41.
中性束离子源弧放电具有气体放电等离子体的非线性特性,工作时还会受到气体压强、外磁场、阴极状态等因素的影响,采用晶闸管相控调压技术的弧电源很难实现对这种大功率电弧的稳定的闭环控制。为此,提出了一种多相多重的大电流DC/DC变换器,具有响应速度快、电流上升时间短、电流纹波小等特点,大幅提高了离子源弧放电闭环控制的稳定性。设计了滤波电感能量回馈电路,弧电源可以根据中性束系统的需要使弧电流快速减小0%~100%(可调),然后根据控制信号迅速恢复正常弧电流输出,形成一个弧电流凹坑。电源还采用超级电容储能技术,使电源体积减小了2/3,电网容量小于10 kVA。离子源放电时不会受到电网波动的影响,弧放电更加稳定。实验数据显示:该电源最大输出为220 kW/1500 A,电流纹波在1%以内,电流上升时间约100 s,最大超调量小于3%,可以满足5 MW中性束离子源及系统的要求。  相似文献   
42.
利用MATLAB对中国聚变工程实验堆(CFETR)低混杂波高压电源系统的调节模块进行仿真,分析了静态电网波动、负载变化、滤波参数等对输出电压的影响。利用补偿网络可以大大减少纹波,增加输出电压的稳定性。该系统的稳定时间在几个毫秒之内,纹波系数<1%。通过仿真决定对该高压电源系统调节模块采用比例积分微分(PID)控制与超前-滞后补偿策略。  相似文献   
43.
利用MATLAB仿真工具,搭建HL-2M中心螺线管(CS)电源系统模型,研究了CS电源变流器过流保护策略。通过仿真研究,为HL-2M CS电源系统中变流器制定了最优的过流保护策略,这为电源安全可靠的运行提供了理论依据。  相似文献   
44.
针对流量控制,设计了一种结构简单、控制方便、精度高的基于PID的流量调节阀。流量调节阀主要由手动平衡阀、流量传感器、步进电机和控制器四部分组成,控制器采用PID算法控制步进电机。检测步进电机电流的大小不仅能确定手动平衡阀是否到达了极限调节值,也可以防止过电流损坏电机。实验测试中,用PC机对输出流量值进行设定和对流量调节阀的控制效果进行分析。通过反复试验,证明了输出的流量值能准确快速的跟随设定值的变化而变化。研究表明,基于PID的流量调节阀能实现高精度的流量控制。  相似文献   
45.
王锦  叶开晓  田艳  刘珂  梁柳玲  李青倩  黄宁  王欣婷 《色谱》2023,41(3):241-249
抗生素作为环境介质中一种典型的新污染物,在各类环境水样中检出频率高且浓度低。为快速、灵敏、准确地分析各类水体中的抗生素,建立了固相萃取-高效液相色谱-串联质谱法(SPE-HPLC-MS/MS)同时测定环境水样中4种青霉素类、12种喹诺酮类和6种大环内酯类共22种抗生素的分析方法。针对抗生素特性和样品基质特点优化前处理方法,重点优化固相萃取柱、水样pH值、水样中乙二胺四乙酸二钠(Na2EDTA)加入量。在200 mL水样中加入0.5 g Na2EDTA,并调节水样的pH值至3,经HLB固相萃取柱富集净化,以乙腈-0.15%(v/v)甲酸水溶液为流动相进行梯度洗脱,采用电喷雾电离源,在正离子模式下使用多反应监测模式进行定性定量分析。结果显示,22种抗生素的相关系数(r)≥0.995,呈现良好的线性关系,方法检出限和定量限分别为2.3~10.7 ng/L和9.2~42.8 ng/L,地表水中3个水平下的加标回收率为61.2%~157%,相对标准偏差(RSD)为1.0%~21.9%,废水中3个水平下的加标回收率为50.1%~129%, RSD为1.2%~16.9%。该方法成功用于水库、地表水、污水处理厂出口、畜禽养殖场等不同类型水样中抗生素的同时测定,其中地表水和畜禽养殖废水中大部分抗生素有检出,在地表水中林可霉素检出率为90%,在畜禽养殖废水中氧氟沙星的检出含量最高,为127 ng/L。该方法检出限和回收率满足定量分析要求,且具有富集水样体积少、分析时间短、适用范围广等优势,特别适用于突发环境污染应急监测,同时为摸清新污染物环境赋存底数和新污染物治理与管控提供有力支撑。  相似文献   
46.
为满足HL-2A装置低杂波电流驱动等辅助加热系统的需要,分析设计了基于脉冲调制技术的大功率高压电源,为速调管提供阴极高压。高压电源采用了模块化串联的系统结构,通过控制算法的调节,电源输出连续可调,使低压低频直流脉冲电源转化为高压高频直流脉冲电源,还具有高功率、高稳定、高冗余的特点。重点对模块的器件参数、选型、工艺等进行详细设计分析,利用多绕组变压器的漏感作为模块的滤波电感,选用特性更好的金属薄膜电容、绝缘栅双极晶体管等器件,优化模块结构;设计了29个副边绕组的多绕组高压隔离变压器,设计了电源控制系统,得出适合本电源控制的控制算法,易于调整高压的幅值以及高压的上升下降时间。最后给出大量实验结果,验证电源的保护能力,两种主要的电源控制算法的可操作性及实用性。试验证明,此套电源不仅满足负载提出的快速保护的要求,其电源工作的稳定度等其他参数也满足设计要求。  相似文献   
47.
针对变电站各类高压容性设备在线监测装置的现场校验,提出一种新的容性设备在线监测装置校验方法并研制出相应的校验系统,校验项目涉及:全电流,阻性电流,容性电流,介损因数。该校验系统由信号采集无线发送装置和检定装置组成,信号采集无线发送装置将现场变压器二次侧电压作为参考电压通过无线传输方式传入检定装置,检定装置内的控制模块根据预设指令及参考电压信号控制内部数控交流电流源生成一路与电网电压频率同步,幅值和相位可调的电流信号。将该电流信号耦合到容性设备在线监测装置电流传感器,通过比较耦合前后装置相应监测量变化值与校验系统设定值的误差,达到校验容性设备在线监测装置有效性的目的。实验证明,该校验系统输出电流指标满足现场校验的要求。  相似文献   
48.
为满足 HL-2M 装置电子回旋共振加热、低杂波电流驱动、中性束注入等二级加热系统的需要,设 计了多套基于脉冲步进技术的大功率高压电源,为速调管、回旋管及中性束、离子源等提供高压。重点针对一套 用于电子回旋系统的高压电源进行了分析。该高压电源设计了多副边绕组的高压隔离变压器、全固态高压调制器 和电源控制系统,并得出了适合本电源控制的控制算法,易于调整高压的输出幅值以及高压的上升下降时间。最 后给出实验结果,以验证电源的保护能力、电源控制算法的可操作性及实用性。试验证明,此套电源不仅满足对 负载的快速保护的要求,其电源工作的稳定度等其它参数也满足设计要求。   相似文献   
49.
针对高纯氮化硅粉体中的9种微量杂质元素(Al、Ca、Co、Fe、K、Mg、Mn、Na、Ni),建立了悬浮液进样-液体阴极辉光放电原子发射光谱定量分析方法.考察了制备稳定悬浮液对样品颗粒度的要求,并通过六通阀将悬浮液引入液体阴极辉光放电原子发射光谱装置检测.本方法采用水溶液标准进行定量分析,无需对悬浮液的pH值进行精确调节,能够保持液体阴极辉光等离子体的稳定性.研究了仪器装置的操作电压、载液流速、光电倍增管积分时间等因素对检出限的影响.优化后得到的最佳实验条件为操作电压1080 V,载液流速1.2 mL/min,光电倍增管积分时间800 ms.利用六通阀进样系统对原有的液体阴极辉光放电原子发射光谱装置进行改进,从而实现悬浮液直接进样检测.用此装置对氮化硅实际样品进行检测,得到各种元素的检出限在0.2~53 mg/kg之间,RSD在1.1%~5.0%之间.通过对氮化硅标准参考物质ERM-ED101进行分析,其测定结果与高温高压消解-电感耦合等离子体发射光谱法一致,并与标准参考值吻合,表明此方法可用于氮化硅粉体的悬浮液直接进样检测,结果准确可靠,灵敏度高,具备应用价值.  相似文献   
50.
李青  汪金菊 《大学数学》2017,33(3):37-45
结合曲波变换和高斯尺度混合模型提出地震信号随机噪声压制方法.该方法首先运用曲波变换对含有随机噪声的地震信号进行分解,然后对各小波子带系数分别建立高斯尺度混合模型估计出原始地震信号所对应的小波系数,最后经曲波逆变换重构获得降噪处理后的地震信号.仿真地震信号和实际地震信号的实验结果均表明本文方法能够有效压制地震信号中的随机噪声干扰,较多地保留了有效信号.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号