全文获取类型
收费全文 | 53篇 |
免费 | 4篇 |
国内免费 | 22篇 |
专业分类
化学 | 17篇 |
力学 | 2篇 |
数学 | 13篇 |
物理学 | 47篇 |
出版年
2023年 | 1篇 |
2020年 | 3篇 |
2019年 | 1篇 |
2018年 | 1篇 |
2017年 | 1篇 |
2015年 | 1篇 |
2014年 | 6篇 |
2013年 | 1篇 |
2012年 | 1篇 |
2011年 | 2篇 |
2010年 | 2篇 |
2009年 | 6篇 |
2008年 | 4篇 |
2007年 | 8篇 |
2006年 | 6篇 |
2005年 | 7篇 |
2004年 | 3篇 |
2003年 | 3篇 |
2002年 | 4篇 |
2001年 | 4篇 |
2000年 | 3篇 |
1999年 | 3篇 |
1998年 | 1篇 |
1997年 | 4篇 |
1996年 | 2篇 |
1994年 | 1篇 |
排序方式: 共有79条查询结果,搜索用时 31 毫秒
51.
52.
大动态范围长狭缝条纹相机系统 总被引:2,自引:1,他引:2
为了满足ICF实验等离子体诊断需要,研制了一种大动态范围长狭缝软X射线条纹相机系统。该系统在保证30 mm的长狭缝的情况下,通过设计一种短聚焦区高压电子光学系统大大缩短电子的渡越时间、提高阳极工作电压至16.5 kV、弃用MCP内增强器、采用光纤面板耦合和使用制冷CCD等一系列措施,达到改善扫描变像管条纹相机动态范围的目的,同时保证具有较高的时间分辨力。动态测试表明,该系统动态空间分辨力为15 lp/mm,时间分辨力优于31 ps,动态范围大于922。 相似文献
53.
低杂波电流驱动系统在2004年经过改造完成了重建工作,并在HL-2A装置上用单只速调管输出300~400kW的微波功率系统进行了工程调试。针对大功率微波的传输和发射,微波的局部打火和拉弧,低杂波传输线和天线作了相应的技术改造,设计了相对独立的真空系统,具备了抽气和充气的能力。 相似文献
54.
55.
这是一个很有趣的问题.由于球面三角形的每条边长都是大圆的劣弧,都小于大圆周长的一半,因此,球面三角形的周长小于3/2个大圆周长,不能任意长.实际上,球面三角形的周长可以更小,其周长小于大圆周长.这个结论很重要,我们给出它的证明.证明如图10,设球面△ABC的三条边分别为a,b,c,球心为O,连结OA,OB,OC,那么O-ABC是一个三面角.在三面角O-ABC中,连结AB,BC,AC.由于球面三角形的边长与三面角的面角之间的对应关系,我们把球面三角形的边长问题转化为三面角的面角问题.因为∠AOB=π-(∠OAB ∠OBA),∠BOC=π-(∠OBC ∠OCB),∠COA=… 相似文献
56.
57.
ECR-PECVD制备SiO2薄膜中衬底射频偏压的作用 总被引:2,自引:0,他引:2
采用微波电子回旋共振等离子体增强化学气相沉积(ECR-PECVD)技术在单晶衬底上制备了SiO2薄膜,研究了射频偏压对薄膜特性的影响。通过X射线光电子能谱(XPS)、傅里叶变换红外线光谱(FTIR)、原子力显镜(AFM)和扫描隧道显微镜(STM)三维形貌图测量等手段,对成膜特性进行了分析。实验结果表明,通过改变射频偏压的参数来控制离子轰击能量,对ECR-PECVD成膜的内应力、溅射现象、微观结构和化学计量均有明显的影响。 相似文献
58.
在转速为1 500~7 000 r/min、比压为1.1~3.9 MPa条件下,以65Mn钢为对摩副,以15 W油为冷却介质,研究了三维网络SiC/Cu复合材料在油流量为8 mL/(min·cm2)时的摩擦性能.结果表明,三维网络SiC/Cu复合材料摩擦片的摩擦系数较粉末冶金摩擦片的摩擦系数有大幅度提高;粉末冶金片与三维网络SiC/Cu复合材料片具有不同的失效机制:粉末冶金片的失效机制是表面裂纹和"过铜"(对偶中铜的转移),三维网络SiC/Cu复合材料片的失效机制以"过铁"(对偶中铁的转移)导致的SiC骨架被覆盖而失去作用为主;2种摩擦片与65Mn钢对摩的过程中都伴随着不同程度的氧化磨损.但粉末冶金片的主要磨损机理为磨粒磨损,而三维网络SiC/Cu复合材料片的磨损机理主要表现为"材料转移"导致的黏着磨损. 相似文献
59.
60.
利用脉冲微波强化、扩展丝光等离子体反应装置,在常压和正压条件下,对低温脉冲微波等离子体裂解甲烷和氢气混合气制C2烃的反应进行了研究。考察了压力、微波功率、脉冲通/断时间以及氢气/甲烷比例、流量等参数对反应的影响。结果表明,在脉冲微波的作用下,常规高压放电形成的在空间呈非连续分布的丝状等离子体被强化和扩展成为连续分布的伞状等离子体,等离子体利用率和活性均得以大幅度提高;利用这种低温等离子体可以获得高的甲烷转化率,而且产物纯净,只有乙烯和乙炔;通过改变压力,还可能调节产物中C2H2/C2H4的物质的量比值,当气体总流量为300mL/min、物质的量比n(H2)/n(CH4)=2:1、压力为0.13MPa、微波峰值功率为120W、脉冲通/断比=400/400ms时,甲烷转化率可达59.2%,C2烃单程收率可达52%,其中乙炔单程收率达42.7%。 相似文献