排序方式: 共有148条查询结果,搜索用时 15 毫秒
141.
三角换元是一种十分实用的方法,它很好地体现了数学中一项基本的思想一转化.而且与许多知识都有交叉,下面通过一些具体的题目展示一下三角换元的美妙之处. 相似文献
142.
143.
我们知道,解决三角形问题有两大工具:正、余弦定理,利用余弦定理可以解决:①已知三边求三角;②已知两边及夹角,求其他一边和两角.利用正弦定理可以解决:③已知两角及一边,求其他角和两边;④已知两边和其中一边的对角,求其他两角和一边.其中已知两边和其中一边的对角, 相似文献
145.
基于SN2取代反应制备了羧甲基-β-环糊精(CM-β-CD),采用层层组装法将其成功修饰在Fe3O4磁性纳米粒子表面(MNPs),得到了CM-β-CD功能化的磁性纳米复合物(CM-β-CD-MNPs),通过透射电子显微镜(TEM)、傅里叶变换红外光谱(FTIR)及振动样品磁强计(VSM)等技术手段进行了表征,考察了其对染料罗丹明B(RhB)的吸附性能。 结果表明,CM-β-CD-MNPs呈球形,分散均匀,平均粒径为16 nm,饱和磁化率为54 emu/g,呈超顺磁性。 吸附动力学符合准二级动力学模型,且吸附1 h达到平衡。 吸附等温线符合Langmuir等温吸附模型,最大吸附量为135.1 mg/g。 相似文献
146.
近年来,单颗粒碰撞技术在纳米电化学领域受到广泛关注. 该技术通常控制超微电极处于某一电位,检测单个纳米颗粒随机碰撞到电极表面后产生的瞬时电流. 通过分析电流信号,可以研究单个纳米颗粒的性质. 尽管该技术可以检测单个纳米颗粒的电化学或电催化电流,但是传统的单颗粒碰撞技术缺乏空间分辨率,难以识别和表征特定的纳米颗粒. 因此,结合光学成像技术研究单颗粒碰撞电化学来补充电化学技术缺失的空间信息已成为一种趋势. 本文首先简要综述了单颗粒碰撞技术的三种检测原理,主要介绍了近年来单颗粒碰撞技术与荧光显微镜、表面等离激元共振显微镜、全息显微镜和电致化学发光相结合的研究进展,最后展望了单颗粒碰撞技术未来的发展趋势. 相似文献
147.
148.